
INAUGURAL ARTICLE COMPUTER SCIENCES

Foundations of reasoning with uncertainty via real-valued logics
Ronald Fagina,1 ID , Ryan Riegelb ID , and Alexander Grayc

This contribution is part of the special series of Inaugural Articles by members of the National Academy of Sciences elected in 2020. Contributed by
Ronald Fagin; received June 19, 2023; accepted March 29, 2024; reviewed by Christian G. Fermüller, Lluis Godo, and George Metcalfe

Interest in logics with some notion of real-valued truths has existed since at least Boole
and has been increasing in AI due to the emergence of neuro-symbolic approaches,
though often their logical inference capabilities are characterized only qualitatively.
We provide foundations for establishing the correctness and power of such systems.
We introduce a rich class of multidimensional sentences, with a sound and complete
axiomatization that can be parameterized to cover many real-valued logics, including all
the common fuzzy logics, and extend these to weighted versions, and to the case where
the truth values are probabilities. Our multidimensional sentences form a very rich
class. Each of our multidimensional sentences describes a set of possible truth values
for a collection of formulas of the real-valued logic, including which combinations of
truth values are possible. Our completeness result is strong, in the sense that it allows
us to derive exactly what information can be inferred about the combinations of truth
values of a collection of formulas given information about the combinations of truth
values of a finite number of other collections of formulas. We give a decision procedure
based on linear programming for deciding, for certain real-valued logics and under
certain natural assumptions, whether a set of our sentences logically implies another
of our sentences. The generality of this work, compared to many previous works on
special cases, may provide insights for both existing and new real-valued logics whose
inference properties have never been characterized. This work may also provide insights
into the reasoning capabilities of deep learning models.

real-valued logic | strongly complete axiomatization | fuzzy logic

Formalization of the idea of real-valued logics (a term which is perhaps not standard but
we will use to refer to various proposals that extend classical logics to ones where truths
can take arbitrary values in the range [0, 1]) is old and fundamental, going back to the
origins of formal logic. It is not well known that Boole himself invented a probabilistic
logic in the 19th century (1), where formulas were assigned truth values corresponding to
probabilities. It was used in AI to model the semantics of vague concepts for commonsense
reasoning by expert systems (2). Real-valued logics have appeared in linguistics to model
certain natural language phenomena (3), in hardware design to deal with multiple stable
voltage levels (4), and in databases to deal with queries that are composed of multiple
graded notions, such as the redness of an object, that can range from 0 (“not at all red”)
to 1 (“completely red”) (5). Despite all this, while definitions of logical correctness and
power (generally, soundness and completeness) are well established and corresponding
procedures for theorem proving having those properties are abundant for classical logics,
the equivalents for real-valued logics are comparatively limited. Though some formal
properties have been established for certain special cases of real-valued logics, the analysis
is typically delicate in that it cannot easily be extended if the logic is extended or changed,
or may only show weaker properties than possible. We discuss previous works in Section 9.

Recent years have seen growing interest in AI in approaches for augmenting the
capabilities of learning-based methods with those of reasoning, often broadly referred to
as neuro-symbolic (though they may not be strictly neural). One of the key goals that
neuro-symbolic approaches have at their root is logical inference, or reasoning. However,
the representation of classical 0–1 logic (where truth values of sentences are either 0,
representing “False,” or 1, representing “True”) is generally insufficient for this goal
because representing uncertain knowledge and conclusions is essential to AI. In order
to merge with the ideas of neural learning, the truth values dealt with must be real-
valued (we shall take these to be real numbers in the interval [0, 1], where intuitively,
0 means “completely false,” and 1 means “completely true”), whether the uncertainty
semantics are those of probabilities, subjective beliefs, neural network activations, or
fuzzy set memberships. For this reason, many major approaches have turned to real-
valued logics. Logic tensor networks (6, 7) define a logical language on real-valued vectors
corresponding to groundings of terms computed by a neural network, which can use

Significance

This work introduces a rich class
of multidimensional sentences
that yield a sound and complete
axiomatization for a larger class
of real-valued logics than
previously considered, including
all of the most common fuzzy
logics, weighted versions, and
probabilistic logics, many of which
have garnered renewed interest
as a result of the developing field
of neuro-symbolic AI. Here,
“complete axiomatization” holds
in a strong sense: whenever a
finite set Γ of our sentences
logically implies one of our
sentences
 , that is, whenever
every model of Γ is a model of
 ,
there is a proof of
 from Γ using
our axiomatization. A decision
procedure for two of the popular
such logics, under certain natural
assumptions, is presented. This
work may also provide insights
into the formal reasoning
capabilities of deep learning
models.

Author affiliations: aInternational Business Machines
(IBM) Almaden Research Center, IBM Research, San
Jose, CA 95120; bInternational Business Machines (IBM)
Thomas J. Watson Research Center, IBM Research,
Yorktown Heights, NY 10598; and cCentaur AI Institute,
Lincoln, CA 95648

Author contributions: R.F., R.R., and A.G. designed
research; R.F. and R.R. performed research; and R.F., R.R.,
and A.G. wrote the paper.

Reviewers: C.G.F., Vienna University of Technology;
L.G., Artificial Intelligence Research Institute, Spanish
National Research Council; and G.M., University of Bern,
Switzerland.

The authors declare no competing interest.

Copyright © 2024 the Author(s). Published by PNAS.
This article is distributed under Creative Commons
Attribution-NonCommercial-NoDerivatives License 4.0
(CC BY-NC-ND).
1To whom correspondence may be addressed. Email:
fagin@us.ibm.com.

Published May 16, 2024.

PNAS 2024 Vol. 121 No. 21 e2309905121 https://doi.org/10.1073/pnas.2309905121 1 of 12

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.2309905121&domain=pdf&date_stamp=2024-05-16
https://orcid.org/0000-0002-7374-0347
https://orcid.org/0000-0002-5204-6524
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:fagin@us.ibm.com

any of the common real-valued logics (e.g., Łukasiewicz, prod-
uct, or Gödel logic) for its connectives (e.g., &, Y, ¬, and
→). Probabilistic soft logics (8) draw a correspondence of
their approach based on Markov random fields (MRFs) with
satisfiability of statements in a real-valued logic (Łukasiewicz).
Tensorlog (9), also based on MRFs but implemented in neural
network frameworks, draws a correspondence of its approach
to the use of connectives in a real-valued logic (product).
Logical neural networks (LNN) (10, 11) represent a methodology
which draws a correspondence between activation functions
of neural networks and connectives in real-valued logics. To
complete a full correspondence between neural networks and
statements in real-valued logic, LNN defines a class of real-valued
logics allowing weighted inputs, which represent the relative
influence of subformulas. This follows the earlier observation
of this connection between neural networks based on rectified
linear units (ReLU) and weighted real-valued logics in ref. 12.
Notably, work on large language models based on such networks
has shown anecdotal examples that appear to indicate the
capability of sometimes-successful reasoning, though the extent
and underlying mechanisms still remain open mysteries. While
widely regarded as fundamental to the goal of AI, the reasoning
capabilities of the aforementioned systems are typically made
qualitatively versus quantitatively and mathematically. While
learning theory (roughly, what it means to perform learning)
is well articulated for a large class of models and, for 0–1 logic,
what it means to perform reasoning is well studied, reasoning is
surprisingly not well formalized for a large class of real-valued
logics. As reasoning becomes an increasing goal of learning-based
work, it becomes important to have a solid mathematical footing
for it.

Soundness and Completeness. In this paper, there are two levels
of logic. In the “inner” layer, we have formulas of the real-valued
logic with its logical connectives. In particular, in this inner layer,
we shall use & for “and” and Y for “or,” as is done in ref. 13. In
the “outer” layer, we have a class of multidimensional sentences
about the inner real-valued logic, such as saying which truth
values a given real-valued formula may attain, or even more,
what combinations of values several real-valued formulas may
attain. For these sentences in the outer layer, which take on only
the classical values 0 and 1 for False and True, respectively, we
in particular make use of the traditional logical symbols ∧ for
“and” and ∨ for “or.” We remark that, somewhat confusingly,
the symbols ∧ and ∨ are often used in real-valued logics for
weaker versions of “and” and “or” than that given by & and Y,
which we do not have need to discuss in this paper.

Let us say that an axiomatization of a logic is finite-strongly
complete if whenever Γ is a finite set of sentences in the (outer)
logic and
 is a single sentence in the (outer) logic that is a
logical consequence of Γ (that is, every model of Γ is a model
of
), then there is a proof of
 from Γ using the axiomatization.
An axiomatization is weakly complete if this holds for Γ = ∅.
That is, an axiomatization is weakly complete if whenever
 is a
valid sentence (true in every model), then there is a proof of

using the axiomatization. The reader might think we can obtain a
finite-strongly complete axiomatization from a weakly complete
axiomatization by believing that if '1 logically implies '2, then
the formula '1 → '2 is valid. This is true for Gödel logic (as
noted in ref. 14; see also ref. 13), but it is false for Łukasiewicz
logic. A counterexample in Łukasiewicz logic is obtained (as the
reader can easily verify) by taking '1 to be the formula A and '2
to be the formula A & A.

Early axiomatizations of real-valued logics in the literature were
typically weakly complete but now have often been improved to
finite-strongly complete. As Di Nola and Lettieri point out in
their paper on a normal form for Łukasiewicz logic (12), Rose
and Rosser (15) gave a syntactic proof of weak completeness for
an axiomatization of Łukasiewicz logic, and later Chang gave an
algebraic proof (16, 17). Hájek and Svedja (14) later gave a finite-
strongly complete axiomatization. There is also a finite-strongly
complete axiomatization for Gödel logic (18). In Section 3, we
shall show why it is necessary to assume that Γ is finite in the
definition of finite-strongly completeness. From now on (except
in Section 9 on related work) we use “complete” to mean “finite-
strongly complete.”

All previous axiomatizations we have discussed so far deal only
with formulas, and not with the truth values assigned to formulas.
Thus, they may infer when a formula
 follows from a finite set
Γ of formulas (that is, whether
 necessarily has truth value 1
when every formula in Γ has truth value 1), but not whether a
certain arbitrary truth value or set of possible truth values for

can be inferred from information about the possible truth values
of members of Γ. A limited form of such inference can be done
for Łukasiewicz real-valued logic by combining it with rational
Pavelka logic (see Section 9 for a discussion on this).

This Paper. We introduce a rich class of multidimensional
sentences (“MD-sentences”) with a sound and complete axiom-
atization.

1. These sentences can say what the set S of possible values is for
a formula �. This set S can be a singleton {s} (meaning that
the truth value of � is s), or S can be an interval, or a union
of intervals, or in fact an arbitrary subset of [0, 1], e.g., the set
of rational numbers in [0, 1].

2. Our sentences can give not only the possible truth values
of formulas, but the interactions between these values. For
example, if �1 and �2 are formulas, our sentences can not
only say what the possible truth values are for each of �1 and
�2, but also how they interact: Thus, if s1 is the truth value
of �1 and s2 is the truth value of �2, then there is a sentence
in our logic that says (s1, s2) must lie in the set S of ordered
pairs, where S is an arbitrary subset of [0, 1]2.

3. Unlike the other axiomatizations mentioned earlier, our
axiomatization can be extended to include the use of weights
for subformulas (where, for example, in the formula �1 Y �2,
the subformula �1 is considered twice as important as the
subformula �2).

A surprising feature of our axiomatization is that it is parame-
terized, so that this one axiomatization is sound and complete
for a large class of real-valued logics including all of the most
common fuzzy logics and even logics that do not obey the
standard restrictions on fuzzy logics (such as conjunction being
commutative). Previous axiomatizations in the literature required
a separate set of axioms for each real-valued logic (for example,
one of the axioms for Łukasiewicz logic is � ↔ ¬¬�, and one of
the axioms for Gödel logic is � ↔ (�&�)). Such axiomatizations
correspond to fixed truth evaluation functions associated with
each connective. By contrast, for our axiomatization, evaluation
functions may be arbitrary, where k-ary connectives map [0, 1]k
into [0, 1].

In fairness and giving credit to the completeness results in the
literature for various real-valued logics, it should be noted that
since our MD-sentences are much more expressive than those
logics, the soundness and completeness for our parametric axiom

2 of 12 https://doi.org/10.1073/pnas.2309905121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

system for MD-sentences does not supersede or entail soundness
and completeness results for less expressive systems. Showing that
a proof system featuring only modus ponens and a number of
axiomatic formula schemes is (sound and) complete for a specific
logic is, in general, a much harder task than we faced, where we
could make use of the vast generality of one of our inference rules
(Rule 7 below).

Throughout this paper, we take the domain of each function
in the real-valued logic to be [0, 1] or [0, 1]2 and the range to be
[0, 1]. This is a common assumption for many real-valued logics,
but all of our results go through with obvious modifications if
the domains are Dk for possibly multiple choices of arity k and
range D, for arbitrary subsets D of the reals. We note that real-
valued logic can be viewed as a special case of multivalued logic
(19), although in multivalued logic there is typically a finite set
of possible truth values, not necessarily linearly ordered.

We also provide a decision procedure for deciding whether a
set of our sentences logically implies another of our sentences
for certain common real-valued logics under certain natural
assumptions. We implement the decision procedure, dubbed
SoCRAtic (for Sound and Complete Real-valued Axiomatic
solver), which we describe in detail in Section 6. While our
sentences allow a wide variety of real-valued logics, as does our
sound and complete axiomatization, this decision procedure
depends heavily on the choice of logical connectives and in
particular is tailored toward Łukasiewicz and Gödel logic, though
it can be adapted to support product logic as well.

Overview. In Section 1, we give our basic notions, including
what a model is and what a sentence is. In Section 2, we give our
(only) axiom and our inference rules. In Section 3, we give our
soundness and completeness theorem. In Section 4, we give a
theorem that says that each finite Boolean combination of our
sentences is equivalent to a single one of our sentences which helps
to show the robustness of our class of sentences. In Section 5, we
discuss possible reductions of the dimensionality of our sentences.
In Section 6, we give the decision procedure. In Section 7, we
show how to extend our methodology to incorporate weights.
In Section 8, we discuss how to deal with treating the truth
values as probabilities. In Section 9, we discuss related work. In
Section 10, we give our conclusions and review their implications
for AI approaches.

1. Models, Formulas, and Sentences
We assume a finite set of atomic propositions. These can be
thought of as the input layer of a neural net, i.e., nodes with no
inputs from other neurons. A model M is an assignment gM of
truth values to the atomic propositions. Thus, M assigns a value
gM (A) ∈ [0, 1] to each atomic proposition A.

We now define the set F of logical formulas. For simplicity,
we assume for now that there are just four logical connectives:
three binary connectives, namely conjunction (denoted by &),
disjunction (denoted by Y, and implication (denoted by →),
and one unary connective, namely negation (denoted by ¬).
However, our definitions and results extend easily to arbitrary
sets of logical connectives of arbitrary arity.

The set F of logical formulas is defined inductively. Every
atomic proposition is a logical formula. If �1 and �2 are logical
formulas, then so are (a) �1 & �2, (b) �1 Y �2, (c) �1 → �2, and
(d) ¬�1.

Two especially useful real-values logics for logical neural
networks are Łukasiewicz logic and Gödel logic. Let �1 and �2 be

formulas with respective truth values s1 and s2. For Łukasiewicz
logic, the truth value of �1 & �2 is max{0, s1 + s2 − 1}, the truth
value of �1 Y �2 is min{1, s1 + s2}, the truth value of �1 → �2
is min{1, 1 − s1 + s2}, and the truth value of ¬�1 is 1 − s1. In
Gödel logic, the truth value of �1 & �2 is min{s1, s2}, the truth
value of �1 Y �2 is max{s1, s2}, the truth value of �1 → �2 is 1 if
s1 ≤ s2 and s2 otherwise, and the truth value of¬�1 is 1 if s1 = 0
and 0 otherwise.

If � is a binary connective, then by f�(s1, s2) we mean the value
of �1 � �2 if the value of �1 is s1 and the value of �2 is s2. For
example, in Łukasiewicz logic, f&(s1, s2) is max{0, s1 + s2 − 1}.
For the unary connective ¬, by f¬(s1) we mean the value of ¬�1
if the value of �1 is s1. For example, in Łukasiewicz logic, f¬(s1)
is 1− s1.

We now define by induction on the structure of formulas what
the truth value of a formula in F is in a model M , for a given
real-valued logic. By definition of a model, we know the truth
value in M of an atomic proposition. If � is a binary connective
then the truth value in M of �1 � �2 is f�(s1, s2) if the truth value
in M of �1 is s1 and the truth value in M of �2 is s2. The truth
value in M of ¬�1 is f¬(s1) if the truth value in M of �1 is s1.

When considering only formulas with truth value 1, as is
common when giving an axiomatization of a real-valued logic,
the convention is to consider a sentence to be simply a member
of F . What if we want to take into account values other than 1?
It is tempting to think we can simply annotate formulas with
truth values or sets of truth values, for instance with sentences of
the form (�; S) where � ∈ F and S ⊆ [0, 1], which indicates the
truth value of ' is in S. In fact, we note that formulas equivalent
to (�; S) have been considered in the literature (20, 21) in the
special case where S is an interval. Our sentences go a step further
and annotate groups of formulas with sets of tuples of truth values.

We take a sentence
 to be an expression of the form
(�1, . . . , �k; S), where �1, . . . , �k ∈ F are the components of

 and where S ⊆ [0, 1]k is the information set of
 . The intuition
is that (�1, . . . , �k; S) says that if the value of each �i is si, for
1 ≤ i ≤ k, then (s1, . . . , sk) ∈ S. Also S may contain other tuples
of truth values (some possibly inconsistent, such as having the
value of A & B being strictly higher than the truth value of A).
Inference then proceeds to form new sentences with restricted
sets S in attempt to identify the si for 1 ≤ i ≤ k or, alternatively,
prove that none can exist.

Note that we are not restricting the information sets S to be
simple, such as being the union of a finite number of intervals
(and in the case of Łukasiewicz or Gödel logic, for the intervals
to have rational endpoints). Such a restriction is common in the
literature for sentences ('; S), as discussed in Section 9.

Unlike our formulas, which can take on arbitrary values in
[0, 1], our sentences take on only the values True and False.
We refer to our sentences as multidimensional sentences, or for
short MD-sentences.* For a fixed k, we refer to the MD-sentence
(�1, . . . , �k; S) as k-dimensional. The class of MD-sentences
is robust. In particular, Theorem 4.2 says that each finite
Boolean combination of MD-sentences is equivalent to a single
MD-sentence. We give a sound and (finite-strongly) complete
axiomatization that is parameterized to deal simultaneously with
many real-valued logics. This axiomatization allows us to derive
exactly what information can be inferred about the combinations

*Note that we are not saying that the logic is multidimensional (which could mean that
the values taken on by variables are vectors, not just numbers), but instead we are saying
that the sentences in our outer logic are multidimensional. The inner logic we work with
in this paper is real-valued, and real-valued logic has been heavily studied. This paper’s
contribution are our multidimensional sentences.

PNAS 2024 Vol. 121 No. 21 e2309905121 https://doi.org/10.1073/pnas.2309905121 3 of 12

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

of truth values of a collection of formulas given information about
the combinations of truth values of other collections of formulas.

Given a model M and a sentence
 = (�1, . . . , �k; S), we now
say what it means for M to satisfy
 . If the value in M of �i is si
(as defined above) for 1 ≤ I ≤ k, and if (s1, . . . , sk) ∈ S, then
we say that M satisfies (or is a model of)
 , written M �
 . Note
that if
 is satisfiable, i.e., if
 has some model M , then S 6= ∅.

2. Axioms and Inference Rules
We now give our axiom and inference rules. Each of our rules is
of the form “from A infer B” or “from A infer B where ...” We
refer to A as the premise and B as the conclusion.

1. We have only one axiom: (�; [0, 1]). Axiom 1 guarantees that
all values are in [0, 1].

2. Our first inference rule is as follows: if � is a permutation of
1, . . . , k, then from (�1, . . . , �k; S) infer (��(1), . . . , ��(k);
S′), where S′ = {(s�(1), . . . , s�(k)) : (s1, . . . , sk) ∈ S}. Rule 2
simply permutes the order of the components.

3. Our next inference rule is as follows: from (�1, . . . , �k; S)
infer (�1, . . . , �k, �k+1, . . . , �m; S × [0, 1]m−k). Rule 3 ex-
tends (�1, . . . , �k; S) to include �k+1, . . . , �m with no non-
trivial information being given about the new components.

4. Our next inference rule is as follows: from (�1, . . . , �k; S1)
and (�1, . . . , �k; S2) infer (�1, . . . , �k; S1 ∩ S2). Rule 4
enables us to join the information in (�1, . . . , �k; S1) and
(�1, . . . , �k; S2).

5. Our next inference rule is the following (where 0 <
r < k): from (�1, . . . , �k; S) infer (�1, . . . , �k−r ; S′), where
S′ = {(s1, . . . , sk−r) : (s1, . . . , sk) ∈ S}. Intuitively, S′ is the
projection of S onto the first k−r components. Rule 5 enables
us to select information about �1, . . . , �k−r from information
about �1, . . . , �k.

6. Our next inference rule is as follows: from (�1, . . . , �k; S)
infer (�1, . . . , �k; S′) if S ⊆ S′. Rule 6 says that we can go
from more information to less information. The intuition is
that smaller information sets are more informative.

We now give an inference rule that depends on the real-valued
logic under consideration. For each connective �, let f� be as
defined in Section 1. In the sentence (�1, . . . , �k; S), let us
say that the tuple (s1, . . . , sk) in S is good if (a) sm = f�(si, sj)
whenever �m is �i � �j and � is a binary connective (such as &),
and (b) sj = f¬(si) whenever �j is ¬�i. Note that being “good”
is a local property of a tuple s in S (that is, it depends only on the
tuple s and not on the other tuples in S). Of course, if the real-
valued logic under consideration has other connectives, possibly
of higher arity, then we would modify the definition of a good
tuple in the obvious way.

7. We then have the following inference rule: from (�1, . . . ,
�k; S) infer (�1, . . . , �k; S′) when S′ is the set of good tuples
of S. Rule 7 is our key rule of inference. Let
1 be the premise
(�1, . . . , �k; S) and let
2 be the conclusion (�1, . . . , �k; S′)
of Rule 7. As we shall discuss later,
1 and
2 are logically
equivalent (that is, every model of one is a model of the
other), and S′ is as small as possible so that
1 and
2 are
logically equivalent.

A simple example of a valid sentence (that is, a sentence rue
in every model) is (A, B, A Y B; S) where S = {(s1, s2, s3) : s1 ∈
[0, 1], s2 ∈ [0, 1], s3 = fY(s1, s2)}. This is derived from the valid
sentence (A, B, A Y B; [0, 1]3) by applying Rule 7.

3. Soundness and Completeness of
MD-Sentences
We need the notion of closure under subformulas. If � is a binary
connective, then the subformulas of �1 � �2 are �1 and �2. The
subformula of ¬� is �. Let Γ be a set of MD-sentences. We
define the closure G of Γ under subformulas as follows. For each
sentence (
1, . . . ,
m; S) in Γ, the set G contains
1, . . . ,
m, and
for each formula
 in G, the set G contains every subformula of
 .
In particular, G contains every atomic proposition that appears
inside the components of Γ. The closure G is defined similarly
when Γ is a set of formulas.

Let Γ be a finite set of MD-sentences, and let
 be a single
MD-sentence. We write Γ �
 if every model of Γ is a model of
 .
We write Γ `
 if there is a proof of
 from Γ, using our axiom
system. Soundness says “Γ `
 implies Γ �
 .” Completeness says
“Γ �
 implies Γ `
” (earlier, we referred to this notion as
“finite-strongly completeness”). In this section, we shall prove
that our axiom system is sound and complete for MD-sentences.

We now explain why it is necessary, in the case of Łukasiewicz
logic, to assume that Γ is finite in the definition of completeness.
(In our explanation, we make use of ideas from (13).) Let Ak

denote A & A & · · ·& A, where A appears k times. Let Γ be the
infinite set of sentences containing (A; [0, 1)) and (B→ Ak; {1})
for each integer k ≥ 1. Thus, Γ says that the value of A is strictly
less than 1 and that B→ Ak takes on the value 1 for each k ≥ 1.
Let
 be (B; {0}), which says that B takes on the value 0. We
now show that Γ logically implies
 . Assume not. Then, there
is a model M where Γ holds but
 does not, and so B does not
take the value 0. In this model M , since Γ holds, the value of A
is less than 1. It then follows from the definition of conjunction
in Łukasiewicz logic that in the model M , there is k such that Ak

has value 0. From (B → Ak; {1}) this then implies that in the
model M , the value of B is 0, a contradiction. Hence, Γ logically
implies
 . Because our proofs are of finite length, there cannot
be a proof of
 from Γ, since this would give a proof of
 from
a finite subset of Γ, but no finite subset of Γ logically implies �.
In the case of Gödel logic, it is all right for Γ to be infinite, since
Gödel logic satisfies a compactness theorem, which says that if
Γ �
 , then there is a finite subset Γ′ of Γ such that Γ′ �
 (22).

We define a special property of certain MD-sentences, that
is used in a crucial manner in our completeness proof. Let us
say that a sentence (�1, . . . , �k; S) is minimized if whenever
(s1, . . . , sk) ∈ S, then there is a model M of (�1, . . . , �k; S)
such that for 1 ≤ i ≤ k, the value of �i in M is si.
Thus, (s1, . . . , sk) ∈ S if and only if there is a model M of
(�1, . . . , �k; S) such that for 1 ≤ i ≤ k, the value of �i in
M is si. We use the word “minimized,” since intuitively, S is
as small as possible. Note that there can be no algorithm for
deciding whether an MD-sentence is minimized, since there are
uncountably many MD-sentences (because there are uncountably
many choices for S).

Our completeness proof makes use of the following lemmas.

Lemma 3.1. Let (�1, . . . , �k; S) be the premise of Rule 7. Assume
that G = {�1, . . . , �k} is closed under subformulas (so that in
particular, every atomic proposition that appears inside a member
of G is a member of G). Then the conclusion (�1, . . . , �k; S′) of
Rule 7 is minimized.

Proof: Let ' be the conclusion (�1, . . . , �k; S′) of Rule 7.
Assume that (s1, . . . , sk) ∈ S′. To prove that ' is minimized,
we must show that there is a model M of ' such that for
1 ≤ i ≤ k, the value of �i in M is si. From the assignment

4 of 12 https://doi.org/10.1073/pnas.2309905121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

of values to the atomic propositions, as specified by a portion of
(s1, . . . , sk), we obtain our model M . For this model M , the value
of each �i is exactly that specified by (s1, . . . , sk), as we can see
by a simple induction on the structure of formulas. Hence, ' is
minimized. �

The assumption of closure under subformulas in Lemma 3.1
is needed, as the following example shows. Let
 be the MD-
sentence (�1 & �2, �1 Y �2; {(0.5, 0.2)}) in Gödel logic. The
result of applying Rule 7 to
 is
 itself because neither of its
components include the other as a subformula. But
 is not
minimized, since it is not satisfiable, because the min of two
numbers cannot be greater than the max.

Lemma 3.2. For each of Rules 2, 3, and 7, the premise is logically
equivalent to the conclusion. For Rule 4, the set of the premises is
logically equivalent to the conclusion.

Proof: The equivalence of the premise and conclusion of Rule 2
is clear. For Rules 3 and 7, the fact that the premise logically
implies the conclusion follows from soundness of the rules, as
does the fact that the set of the premises of Rule 4 logically implies
the conclusion, and we shall show soundness shortly. We now
show that for Rules 3 and 7, the conclusion logically implies the
premise. For Rule 3, we see that if (s1, . . . , sm) ∈ S × [0, 1]m−k,
then (s1, . . . , sk) ∈ S. Hence, the conclusion of Rule 3 logically
implies the premise of Rule 3. For Rule 7, the conclusion logically
implies the premise because of the soundness of Rule 6. For
Rule 4, the conclusion logically implies each of the premises,
and hence the set of the premises, because of the soundness of
Rule 6. �

Lemma 3.3. Minimization is preserved by Rules 2 and 4, in the
following sense.

1. If the premise of Rule 2 is minimized, then so is the conclusion.
2. If the premises (�1, . . . , �k; S1) and (�1, . . . , �k; S2) of Rule 4

are minimized, then so is the conclusion (�1, . . . , �k; S1 ∩ S2).

Proof: Part (1) is immediate, since the premise and conclusion
have exactly the same information.

For part (2), assume that (�1, . . . , �k; S1) and (�1, . . . , �k; S2)
are minimized. To show that (�1, . . . , �k; S1∩S2) is minimized,
we must show that if (s1, . . . , sk) ∈ S1∩S2, then there is a model
M of (�1, . . . , �k; S1 ∩ S2) such that for 1 ≤ i ≤ k, the value
of �i in M is si. Assume that (s1, . . . , sk) ∈ S1 ∩ S2. Hence,
(s1, . . . , sk) ∈ S1. Since (�1, . . . , �k; S1) is minimized, we obtain
the desired model M . �

Theorem 3.4. Our axiom system is sound and complete for
MD-sentences.

Proof: We begin by proving soundness. We say that an axiom
is sound if it is true in every model. We say that an inference
rule is sound if every model that satisfies the premise also satisfies
the conclusion. To prove soundness of our axiom system, it is
sufficient to show that our axiom is sound and that each of our
rules is sound.

Axiom 1 is sound, since every real-valued logic formula has a
value in [0, 1].

Rule 2 is sound, since the premise and conclusion encode
exactly the same information.

Rule 3 is sound for the following reason. Let M be a model,
and let s1, . . . , sm be the values of �1, . . . , �m, respectively, in M .
If M satisfies the premise, then (s1, . . . , sk) ∈ S. This implies that
(s1, . . . , sm) ∈ S × [0, 1]m−k) and so M satisfies the conclusion.

Rule 4 is sound for the following reason. Let M be a model,
and let s1, . . . , sk be the values of �1, . . . , �k, respectively, in M . If
M satisfies the premise, then (s1, . . . , sk) ∈ S1 and (s1, . . . , sk) ∈
S2. Therefore, (s1, . . . , sk) ∈ S1 ∩ S2, and so M satisfies the
conclusion.

Rule 5 is sound for the following reason. Let M be a model,
and let s1, . . . , sk be the values of �1, . . . , �k, respectively, in
M . If M satisfies the premise, then (s1, . . . , sk) ∈ S. Therefore
(s1, . . . , sk−r) ∈ S′, and so M satisfies the conclusion.

Rule 6 is sound for the following reason. Let M be a model,
and let s1, . . . , sk be the values of �1, . . . , �k, respectively, in
M . If M satisfies the premise, then (s1, . . . , sk) ∈ S. Therefore,
(s1, . . . , sk) ∈ S′, and so M satisfies the conclusion.

Rule 7 is sound for the following reason. Let M be a model,
and let s1, . . . , sk be the values of �1, . . . , �k, respectively, in M . If
M satisfies the premise, then (s1, . . . , sk) ∈ S. In our real-valued
logic, we have that (a) f�(si, sj) = sm when �m is �i � �j and �
is a binary connective (such as &), and (b) f¬(si) = sj when �j
is ¬�i. So the tuple (s1, . . . , sk) is good, and hence in S′, so M
satisfies the conclusion.

This completes the proof of soundness. We now prove
completeness. Assume that Γ is finite, and Γ �
 ; we must
show that Γ `
 . We can assume without loss of generality that
Γ is nonempty, because if Γ is empty, we replace it by a singleton
set containing an instance of our Axiom 1.

Let Γ = {
1, . . . ,
n}. For 1 ≤ i ≤ n, assume that
i is
(�i

1, . . . , �i
ki
; Si), and let Γi = {�i

1, . . . , �i
ki
}. Assume that
 is

(�0
1 , . . . , �0

k0
; S0), and let Γ0 = {�0

1 , . . . , �0
k0
}. Let G be the

closure of Γ0 ∪ Γ1 ∪ · · · ∪ Γn under subformulas.
For each i with 1 ≤ i ≤ n, let Hi be the set difference G \ Γi.

Let ri = |Hi|. Let Hi = {� i
1, . . . � i

ri
}. By applying Rule 3, we

prove from
i the sentence (�i
1, . . . , �i

ki
, � i

1, . . . , � i
ri
; Si× [0, 1]ri).

Let i be the conclusion of Rule 7 when the premise is
(�i

1, . . . , �i
ki

, � i
1, . . . , � i

ri
; Si × [0, 1]ri).

Let �1, . . . , �p be a fixed ordering of the members of G. Since
the set of components of each i is G, we can use Rule 2
to rewrite i as a sentence (�1, . . . , �p; Ti). Let us call this
sentence 'i.

Also, since the only rules used in proving'i from
i are Rules 2,
3, and 7, it follows from Lemma 3.2 that
i and 'i are logically
equivalent.

We now make use of the notion of minimization. Let T =
T1 ∩ · · · ∩ Tn. Define ' to be the sentence (�1, . . . , �p; T).
It follows from Lemma 3.1 that each i is minimized. So by
Lemma 3.3, each 'i is minimized. By Lemma 3.3 again, ' is
minimized.

The sentence ' was obtained from the sentences 'i by
applying Rule 4 n − 1 times. It follows from Lemma 3.2 that
' is equivalent to {'1, . . . ,'n}. Since we also showed that
i
is logically equivalent to 'i for 1 ≤ i ≤ n, it follows that '
is logically equivalent to Γ. Hence, since Γ �
 , it follows that
{'} �
 . It also follows that to prove that Γ `
 , we need only
show that there is a proof of
 from '.

Recall that
 is (�0
1 , . . . , �0

k0
; S0), and ' is (�1, . . . , �p; T). By

applying Rule 2, we can reorder the components of ' so that
the components start with �0

1 , . . . , �0
k0

. We thereby obtain from
' a sentence (�0

1 , . . . , �0
k0

, . . . ; T ′), which we denote by '′. By
Lemma 3.2, we know that ' and '′ are logically equivalent.
So {'′} �
 . Since ' is minimized, so is '′, by Lemma 3.3. By
applying Rule 5, we obtain from'′ a sentence (�0

1 , . . . , �0
k0

; T ′′),
which we denote by '′′.

PNAS 2024 Vol. 121 No. 21 e2309905121 https://doi.org/10.1073/pnas.2309905121 5 of 12

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

We now show that T ′′ ⊆ S0. This is sufficient to complete the
proof of completeness, since then we can use Rule 6 to prove
 .
If T ′′ is empty, we are done. So assume that (s1, . . . , sk0) ∈ T ′′;
we must show that (s1, . . . , sk0) ∈ S0.

Since (s1, . . . , sk0) ∈ T ′′, it follows that there is an extension
(s1, . . . , sk0 , . . . , sp) in T ′. Since'′ is minimized, there is a model
M of '′ such that the value of �0

i is si, for 1 ≤ i ≤ k0. Since
{'′} �
 , it follows that M is a model of
 . By definition of what it
means for M to be a model of
 , it follows that (s1, . . . , sk0) ∈ S0,
as desired.

This completes the soundness and completeness proofs. �

4. Boolean Combinations of MD-Sentences
Our main theorem in this section implies that MD-sentences are
robust, in that each finite Boolean combination of MD-sentences
is equivalent to a single MD-sentence. Of course, since we are
dealing with sentences (which take only the values True and
False) in our outer logic, we use the standard Boolean connectives.
Shortly, we shall make these notions precise.

In this section, there will be two disjoint sets of atomic propo-
sitions. The first are the atomic propositions appearing inside
MD-sentences; we call these MD-atomic propositions. For exam-
ple, in the MD-sentence (A & B, A Y B; [0.3, 0.7] × [0.5, 1]),
the MD-atomic propositions are A and B. The second are those
atomic propositions appearing inside propositional formulas; we
call these prop-atomic propositions. For example, in the proposi-
tional formula X ∨ (¬X ∧ Y), the prop-atomic propositions are
X and Y .

We now define extended MD-sentences. Let
 be a propositional
formula (built using ∧, ∨, and ¬), and let f be a function
mapping each prop-atomic proposition appearing in
 to an MD-
sentence. Then the result of replacing each prop-atomic proposi-
tion X in
 by f (X) is an extended MD-sentence. For example,
let
 be the propositional formula X ∨ (¬X ∧ Y), let f (X) =
(�1; S), and let f (Y) = (�′1, �′2; S′). We then get the extended
MD-sentence (�1; S) ∨ (¬(�1; S) ∧ (�′1, �′2; S′)).

This defines the syntax of extended MD-sentences. We now
define their semantics. As before, a model M is an assignment gM

of truth values to the MD-atomic propositions. Let
 be a
propositional formula (built using ∧, ∨, and ¬), and let f be
a function mapping each prop-atomic proposition appearing in

 to an MD-sentence. Let the result of replacing each prop-
atomic proposition X in
 by f (X) be the extended MD-
sentence
 ′. We now say what it means for the model M
to model, or satisfy,
 ′. For each prop-atomic proposition X
appearing in
 , let f ′(X) = True if M � f (X), and otherwise
let f ′(X) = False. Now let
 ′′ be the result of replacing every
prop-atomic proposition X in
 by f ′(X). The result is logically
equivalent to either True or False. If this result is logically
equivalent to True, then we say that M models
 ′, written
M �
 ′. Let us consider our example above, where
 is the
propositional formula X ∨ (¬X ∧ Y), and f (X) = (�1; S), and
f (Y) = (�′1, �′2; S′). This gives the extended MD-sentence
 ′,
which is (�1; S)∨ (¬(�1; S)∧ (�′1, �′2; S′)). If M 6� (�1; S) but
M � (�′1, �′2; S′), then
 ′′ is False ∨ (¬False ∧ True), which is
logically equivalent to True. So M �
 ′.
Theorem 4.1. Every extended MD-sentence is logically equivalent
to a single MD-sentence.
Proof: Let
 be a propositional formula built using∧,∨, and¬.
Assume that the extended MD-sentence
 ′ is obtained from

by replacing each prop-atomic proposition in
 with an MD-
sentence.

We prove the theorem by induction on the structure of
 ′,
working from the inside out. Thus, we show a) if �1 and �2
are MD-sentences, then the extended MD-sentence �1 ∨ �2 is
logically equivalent to an MD-sentence; b) if �1 and �2 are MD-
sentences, then the extended MD-sentence �1 ∧ �2 is logically
equivalent to an MD-sentence; and c) if �1 is an MD-sentence,
then the extended MD-sentence ¬�1 is logically equivalent to an
MD-sentence. Let �1 and �2 be MD-sentences. Assume that �1 is
(�1

1 , . . . , �1
m; S1), and that �2 is (�2

1 , . . . , �2
n ; S2). As in the proof

of Theorem 3.4, let G be the closure of {�1
1 , . . . , �1

m, �2
1 , . . . , �2

n}
under subformulas. Assume that G = {�1, . . . , �p}. As in
the proof of Theorem 3.4, we know that for i = 1 and i = 2,
there is Ti such that �i is equivalent to a sentence (�1, . . . , �p; Ti).
We now show that the disjunction �1 ∨ �2 is equivalent to
(�1, . . . , �p; T1 ∪ T2). Let M be a model, and assume that the
value of �i in M is si, for 1 ≤ I ≤ p. If M satisfies �1 ∨ �2, then
(s1, . . . , sp) ∈ T1 or (s1, . . . , sp) ∈ T2. Hence, (s1, . . . , sp) ∈
T1 ∪ T2, so M satisfies (�1, . . . , �p; T1 ∪ T2). Conversely, if M
satisfies (�1, . . . , �p; T1 ∪ T2), then (s1, . . . , sp) ∈ T1 ∪ T2, and
hence either (s1, . . . , sp) ∈ T1, in which case M satisfies �1, or
(s1, . . . , sp) ∈ T2, in which case M satisfies �2. Therefore, M
satisfies �1 ∨ �2,as desired. A similar argument shows that the
conjunction �1 ∧ �2 is equivalent to (�1, . . . , �p; T1 ∩ T2), and
the negation ¬
1 is equivalent to (�1, . . . , �p; T̃i), where T̃1 is
the set difference [0, 1]p \ T1. �

A good way to view Theorem 4.1 is as follows:

Theorem 4.2. Each finite Boolean combination of MD-sentences
is equivalent to a single MD-sentence.

Proof: This is really just a restating of Theorem 4.1. �

5. Reducing the Dimensionality
In this section, we give both a negative and a positive result about
reducing the dimensionality of MD-sentences. We then give an
open problem.

Theorem 5.1. There is a two-dimensional MD-sentence that is
not equivalent (in either Łukasiewicz or Gödel logic) to a one-
dimensional MD-sentence.

Proof: Let � be the two-dimensional MD-sentence (A1, A2; S)
where S = {(a1, a2) : a2

1 = a2}. We now show that � is not
equivalent to a one-dimensional MD-sentence. If ' is a formula
in our set F of logical formulas, and ' involves only A1 and A2,
then it is easy to see (by induction on the structure of formulas)
that for Łukasiewicz or Gödel logic, ' defines a piecewise linear
function g', in the sense that the one-dimensional MD-sentence
('; S′) says that if a1 is the value of A1 and a2 is the value of
A2, then g'(a1, a2) ∈ S′. Since there is no such piecewise linear
function g' and set S′ for our sentence �, the result holds. �

The next theorem does not depend on restricting to
Łukasiewicz or Gödel logic.

Theorem 5.2. Every finite set of MD-sentences of arbitrary
dimensions that involve only the k atomic propositions A1, . . . , Ak is
equivalent to a single k-dimensional MD sentence (A1, . . . , Ak; S).
(The set S depends on the real-valued logic being considered.)

Proof: Let Γ be a finite set of MD-sentences. We can view
Γ as a conjunction of MD-sentences, so by Theorem 4.1, Γ
is equivalent to a single MD-sentence
 . As in the proof of

6 of 12 https://doi.org/10.1073/pnas.2309905121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

completeness, by closing under subformulas, applying Rule 7,
and reordering by applying Rules 2, we obtain an MD-
sentence (A1, . . . , Ak,'1, . . . ,'′r ; S′) that is equivalent to
 .
Since the tuples in S′ are good tuples, this is equivalent
to the sentence (A1, . . . , Ak; S) where S = {(s1, . . . , sk) :
(s1, . . . sk, s′1, . . . s′r) ∈ S′}. �

Open problem: For each k with k ≥ 2, does there exist a (k+1)-
dimensional MD-sentence that in Łukasiewicz or Gödel logic is
not equivalent to a k-dimensional MD-sentence?

6. SoCRAtic: A Decision Procedure
Given a finite set Γ of MD-sentences, and a single MD-sentence

 , Theorem 3.4 says that Γ �
 if and only if Γ `
 . As we
shall show, under natural assumptions there is an algorithm
for deciding whether Γ �
 . We call this algorithm a decision
procedure. If the information sets S all have a simple structure
and the size of Γ is treated as a constant, then the algorithm runs
in polynomial time.

It is natural to wonder whether we can simply use our complete
axiomatization to derive a decision procedure. The usual answer
is that it is not clear in what order to apply the rules of inference.
In our proof of completeness, the rules of inference are applied in
a specific order, so that is not an issue here. Rather, the problem
is that in applying Rule 7, there is no easy way to derive S′
from S, even if S is fairly simple. In fact, we now show that
even deciding whether S′ is nonempty is NP-hard. Let ' be an
instance of the NP-hard problem 3SAT. Thus, ' is of the form
(B1

1 Y B1
2 Y B1

3) & · · · & (Br
1 Y Br

2 Y Br
3), where each Bi

j is a
literal (an atomic proposition or its negation). Assume that the
atomic propositions that appear in ' are A1, . . . , Ak. Let be
the sentence

(A1, . . . , Ak,¬A1, . . . ,¬Ak, �1, . . . , �r , �1 Y B1
3 , . . . , �r Y Br

3; S),

where �i is Bi
1 Y Bi

2, for 1 ≤ i ≤ r, and where S = {0, 1}2k+r
×

{1}r . Assume that we apply Rule 7 where the premise is , and
the conclusion is

(A1, . . . , Ak,¬A1, . . . ,¬Ak, �1, . . . , �r , �1YB1
3 , . . . , �r YBr

3; S′).

We call this sentence ′. It follows easily from our construction
of that the 3SAT problem ' is satisfiable if and only if
 is satisfiable. Now and ′ are logically equivalent, by
Lemma 3.2. So the 3SAT problem ' is satisfiable if and only
if ′ is satisfiable. By Lemma 3.1, we know that ′ is minimized.
Hence, if S′ is nonempty, there is a model of ′, by the definition
of minimization. And if S′ is empty, then by the definition of a
model of a sentence, there is no model of ′. Therefore, ′ is
satisfiable if and only if S′ is nonempty. By combining this with
our earlier observation that the 3SAT problem ' is satisfiable if
and only if ′ is satisfiable, it follows that the 3SAT problem ' is
satisfiable if and only if S′ is nonempty. Hence, deciding whether
S′ is nonempty is NP-hard.

We now discuss our decision procedure, which bears resem-
blance to Reiner Hähnle’s decision procedure for the tableaux
method with infinite-valued Łukasiewicz logic (23) but extends
support to discontinuous operators. Our decision procedure
makes use of linear programming and is thus particularly suited
for Łukasiewicz and Gödel logic’s piecewise linear connective
functions; we focus primarily on these two logics in the following;
however, it is also possible for our decision procedure to work on
product logic using the same logarithmic transform as in ref. 24.

To have a chance of there being a decision procedure, the set
portion S of an MD-sentence (�1, . . . , �k; S) must be tractable.
We now give a simple, natural choice for the set portions. A
rational interval is a subset of [0, 1] that is of one of the four forms
(a, b), [a, b], (a, b], or [a, b), where a and b are rational numbers.
Let us say that a sentence (�1, . . . , �k; S) is interval-based if S is
of the form S1 × · · · × Sk, where each Si is a union of a finite
number of rational intervals. If each Si is the union of at most
N rational intervals, then we say that the sentence is N -interval-
based . Note that this interval-based sentence (�1, . . . , �k; S) is
equivalent to the set {(�1; S1), . . . , (�k; Sk)} of one-dimensional
sentences. This observation is useful in implementing the decision
procedure.

Let Γ = {
1, . . . ,
n}. For 1 ≤ i ≤ n, assume that
i is
(�i

1, . . . , �i
ki
; Si), and let Γi = {�i

1, . . . , �i
ki
}. Assume that
 is

(�0
1 , . . . , �0

k0
; S0), and let Γ0 = {�0

1 , . . . , �0
k0
}. Let G be the

closure of Γ0 ∪ Γ1 ∪ · · · ∪ Γn under subformulas. If |G| ≤ M ,
then we say that the pair (Γ,
) has nesting depth at most M .

Theorem 6.1. Assume either Łukasiewicz logic or Gödel logic, with
the connectives &, Y,→, and ¬. Assume that Γ ∪ {
} is interval
based. Then there is an algorithm that determines whether Γ �
 .
Assume that Γ has at most P sentences, each sentence in Γ ∪ {
} is
N -interval based, and (Γ,
) has nesting depth at most M. If M is
fixed, then the algorithm runs in time polynomial in P and N .

Proof: Assume throughout the proof that Γ has at most P
sentences, each sentence in Γ ∪ {
} is N -interval based, and
(Γ,
) has nesting depth at most M .

It is easy to see that Γ �
 if and only Γ∪{¬
} is not satisfiable.
So we need only give an algorithm that decides whether Γ∪{¬
}
is satisfiable.

Let {�1, . . . , �p} be the closure of Γ ∪ {
} under subformulas.
Let Γ = {
1, . . . ,
n}. By making use of Rules 2 and 3, for each
i with 1 ≤ i ≤ n, we can create a sentence
 ′i of the form
(�1, . . . , �p; Si) that by Lemma 3.2 is equivalent to
i, and that
has �1, . . . , �p as components. By the construction, each
 ′i is
N -interval-based.

Similarly, create the sentence
 ′ of the form (�1, . . . , �p; T)
that is equivalent to
 , and that has �1, . . . , �p as components.
As before,
 ′ is N -interval-based.

Now Γ is equivalent to the conjunction of the sentences
 ′i for
1 ≤ i ≤ n, and this conjunction is equivalent to (�1, . . . , �p; S),
where S =

⋂
i≤n Si. We now show that (�1, . . . , �p; S) is

PN -interval-based. By assumption, for each i with 1 ≤ i ≤ n, we
have that Si is of the form Si

1×· · ·×Si
p, where each Si

j is the union
of at most N intervals. For each j with 1 ≤ j ≤ p, let Sj =

⋂
i Si

j .
Then S = S1 × · · · × Sp. So to show that (�1, . . . , �p; S) is
PN -interval-based, we need only show that each Sj is the union
of at most PN intervals.

Since Sj =
⋂

i≤n Si
j , where each Si

j is the union of at most N
intervals, we see that Sj is the union of intervals where the left
endpoint of each interval in Sj is one of the left endpoints of
intervals in

⋃
i≤n Si

j . For each j, there are n sets Si
j . And for each

i with 1 ≤ i ≤ n, there are at most N left endpoints of Si
j . So

the total number of left endpoints of intervals in
⋃

i≤n Si
j is at

most nN ≤ PN , and so the number of intervals in Sj is at most
PN . Since S = S1 × · · · × Sp, it follows that (�1, . . . , �p; S) is
PN -interval-based.

Let us now consider ¬
 , which is equivalent to ¬
 ′. Recall
that
 ′ is (�1, . . . , �p; T), and that
 ′ is N -interval-based. So

PNAS 2024 Vol. 121 No. 21 e2309905121 https://doi.org/10.1073/pnas.2309905121 7 of 12

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

T is of the form T1 × · × Tp, where each Tj is the union of
at most N intervals. As discussed earlier, the negation of
 ′ is
(�1, . . . , �p; T̃), where T̃ is the set difference [0, 1]p \ T . For
each j with 1 ≤ j ≤ p, let T ′j be the set difference [0, 1] \
Tj. Clearly, T ′j is the union of intervals. The left endpoints of
intervals in T ′j are the right-end points of intervals in Tj, possible
along with 0. So T ′j is the union of at most N + 1 intervals. Let
Vj = [0, 1]j−1

× T ′j × [0, 1]p−j. It is straightforward to see that
T̃ =

⋃
j≤p Vj.

Now, showing that Γ ∪ {¬
} is not satisfiable is equivalent to
showing that (�1, . . . , �p; S)∧ (�1, . . . , �p; T̃) is not satisfiable,
which is equivalent to showing that for every j with 1 ≤ j ≤ p,
we have that (�1, . . . , �p; S)∧ (�1, . . . , �p; Vj) is not satisfiable.
So we need only give an algorithm for deciding whether
(�1, . . . , �p; S)∧(�1, . . . , �p; Vj) is satisfiable. Let us hold j fixed.
Since, as we showed, (�1, . . . , �p; S) is PN -interval-based, we can
write S as S1×· · ·×Sp, where each Si is the union of at most PN
intervals. Now (�1, . . . , �p; S)∧ (�1, . . . , �p; Vj) is equivalent to
(�1, . . . , �p; S ∩ Vj). Now S ∩ Vj is of the form S′1 × · · · × S′p,
where S′m = Sm for m 6= j, and where S′j = Sj ∩ T ′j . We showed
that T ′j is the union of at most N + 1 intervals, and that Sj is the
union of at most PN intervals, so it follows that Sj ∩ T ′j is the
union of at most PN + N + 1 intervals, since each left endpoint
of the intervals in Sj ∩T ′j is a left endpoint of an interval in Sj or
an interval in T ′j .

We now describe our algorithm for deciding whether the
sentence (�1, . . . , �p; S ∩ Vj), that is, for the sentence (�1, . . . ,
�p; S′1 × · · · × S′p), which is (PN + N + 1)-interval-based, is
satisfiable. This can be broken into subproblems, one for each
choice (I1, . . . , Ip) of a single interval Ik from S′k for each k with
1 ≤ k ≤ p. This gives a total of at most (PN + N + 1)M

subproblems. For each of these subproblems, we wish to decide
satisfiability of the system {s1 ∈ I1, . . . , sp ∈ Ip} along with (a)
the binary constraints f�(si, sj) = sm when �m is �i � �j and � is
a &, Y, or→, and (b) f¬(si) = sj when �j is ¬�i.

The constraints sj ∈ Ij are specified by inequalities (for
example, if Ij is (a, b] we get the inequalities a < si ≤ b).
We now show how to deal with the constraints in (a) and
(b) above. A canonical example is given by dealing with
f&(si, sj) = sm in Gödel logic, which interprets “f&(si, sj) = sm”
as min{si, sj} = sm. We split the system of constraints into two
systems of constraints, one where we replace min{si, sj} = sm
by the two statements “si ≤ sj, si = sm” and another where we
replace min{si, sj} = sm by the two statements “sj < si, sj = sm.”
In Łukasiewicz logic, where f&(si, sj) is max{0, s1 + s2 − 1}, we
split the system of constraints into two systems of constraints,
one where we replace max{0, s1 + s2 − 1} = sm by the two
statements “si + sj − 1 ≥ 0, si + sj − 1 = sm” and another
where we replace max{0, s1 + s2−1} = sm by the two statements
“si + sj−1 < 0, sm = 0.” The same approach works for the other
binary connectives. For example, in Gödel logic, where f→(si, sj)
is 1 if si ≤ sj and is sj otherwise, we would split into two cases, one
where we replace f→(si, sj) = sm by the two statements “si ≤ sj,
sm = 1” and another where we replace f→(si, sj) = sm by the
two statements “sj > si, sm = sj.” In considering the effect of the
constraints in (a) and (b), each of our at most (PN + N + 1)M

subproblems splits at most 2p
≤ 2M times, giving a grand total

of at most (PN + N + 1)M 2M systems of inequalities that we
need to check for feasibility (that is, to see whether there is

a solution). For each of these systems of inequalities, we can
make use a polynomial-time algorithm for linear programming
to decide feasibility, where the size of each of these systems is
linear in M , and so the running time for each instance of the
linear programming algorithm is polynomial in M . Since also
the number of systems is at most (PN + N + 1)M 2M , and
sinceM is fixed by assumption, this gives us an overall algorithm
for decidability, whose running time is polynomial in N
and P. �

The reason we held the parameter M fixed is that the running
time of the algorithm is exponential in M , because there are an
exponential number of calls to a linear programming subroutine.
The algorithm is polynomial-time if there is a fixed bound on M .
Such a bound is necessary, because the problem can be co-NP
hard, for the following reason.

Let
 be the sentence (A,¬A; [1] × [1]). Then
 is not
satisfiable. Let Γ consist of the single sentence from the
beginning of the section. Then Γ �
 if and only if is
not satisfiable. Now is satisfiable if and only if S′ from the
beginning of the section is nonempty, which we showed is an
NP-hard problem to determine. Since Γ �
 if and only if is
not satisfiable, it follows that deciding whether Γ �
 is co-NP
hard.

We now give an implementation of the decision procedure.
The decision procedure described in the proof of Theorem 6.1
is available from the socratic-logic GitHub repository hosted
at https://github.com/IBM/socratic-logic. We implemented the
algorithm as a Python package named socratic, which requires
Python 3.6 or newer and makes use of IBM® ILOG®CPLEX®Op-
timization Studio V12.10.0 or newer via the docplex Python
package. It would also be possible to implement this same
decision procedure using satisfiability modulo theories (SMT)
and solvers such as Z3.

6.1. Implementation Details. The implementation closely ad-
heres to the decision procedure described in the proof of
Theorem 6.1, though with a few notable design shortcuts.
6.1.1. Boolean variables. One such shortcut is the use of mixed
integer linear programming (MILP) to perform the “splitting”
of linear programs into two possible optimization problems,
specifically by adding a Boolean variable that determines which
of a set of constraints must be active. MILP’s exploration of
either value for the Boolean variable is then equivalent to
repeating linear optimization for either possible set of constraints;
no feasible solution exists for any combination of Boolean
variables in exactly the case that none of the split linear
programs are feasible. In practice, CPLEX has built-in support
for min, max, abs, and a handful of other functions, though
Boolean variables are also useful for implementing Gödel logic’s
implication, negation, and equivalence operations as well as
selecting the specific intervals a sentence’s formula truth values lie
within.
6.1.2. Strict inequality. The described decision procedure also
occasionally calls for continuous constraints with strict inequality,
in particular when dealing with the complements of closed
intervals, but also when handling input open intervals or the
Gödel implication, (x→ y) = y if x > y else 1. To implement a
strict inequality constraint such as x > y, we introduce a global
gap variable � ∈ [0, 1] to widen the distance between either
side of the inequality, e.g., x ≥ y + �, and then maximize �.
If optimization yields an apparently feasible solution but with
� = 0, we regard it as infeasible because at least one strict
inequality constraint could not be honored strictly.

8 of 12 https://doi.org/10.1073/pnas.2309905121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

https://github.com/IBM/socratic-logic

6.1.3. One-dimensional sentences. We additionally observe that,
for theories restricted to interval-based sentences, it is sufficient to
support only sentences containing a single formula and collection
of truth value intervals, i.e., one-dimensional sentences of the
form (�; S) for a single formula �. This is because of the following
theorem:

Theorem 6.2. Interval-based sentence s = (�1, . . . , �k; S1 ×
· · · × Sk) is equivalent to a collection of one-dimensional
sentences s1, . . . , sk, where si = (�i; Si).

Proof: Given interval-based sentence s and one-dimensional
sentences s1, . . . , sk as described, apply Rules 3 and 2 to obtain
s′1, . . . , s′k given s′i = (�1, . . . , �k; [0, 1]i−1

× Si× [0, 1]k−i). One
may then repeatedly apply Rule 4 to compose these exactly into s.
Likewise, one may apply Rules 2 and 5 to obtain each si directly
from s. Hence, the two forms are equivalent. �

6.2. Experimental Results. We tested socratic in four different
experimental contexts:

• 3SAT and higher k-SAT problems which become satisfiable if
any one of their input clauses is removed

• 82 axioms and tautologies taken from Hájek (13), some of
which hold only for one of Łukasiewicz or Gödel logic

• A formula given in Formula 2 that is classically valid but invalid
in both Łukasiewicz and Gödel logic unless propositions are
constrained to be Boolean

• A stress test on sentences with thousands of intervals

Experiments are conducted on a MacBook Pro with macOS
Catalina 10.15.5, 2.9 GHz Quad-Core Intel Core i7, 16 GB
2133 MHz LPDDR3, and Intel HD Graphics 630 1536 MB.
k-SAT. We construct classically unsatisfiable k-SAT problems of
the form

(x1 ∧ ¬x1) ∨ · · · ∨ (xk ∧ ¬xk), [1]

which, after CNF conversion, and replacing ∨ by Y, yields for
3SAT

(x1 Y x2 Y x3), (¬x1 Y x2 Y x3), (x1 Y ¬x2 Y x3),
(x1 Y x2 Y ¬x3), (x1 Y ¬x2 Y ¬x3), (¬x1 Y x2 Y ¬x3),
(¬x1 Y ¬x2 Y x3), (¬x1 Y ¬x2 Y ¬x3)

and similarly for larger k. The removal of any one clause in such
a problem renders it (classically) satisfiable. This is similar to
the problem classes described in refs. 25 and 26; however, we
maintain problem difficulty in Łukasiewicz logic by restricting
truth-value intervals, as further described below.

We observe that, when each clause is required to have truth
value exactly 1 but propositions are allowed to have any truth
value, socratic correctly determines the problem to be

1. unsatisfiable in Gödel logic,
2. satisfiable in Gödel logic when dropping any one clause,
3. trivially satisfiable in Łukasiewicz logic with, e.g., xi = 0.5,
4. again unsatisfiable in Łukasiewicz logic when propositions are

required to have truth values in range either
[
0, 1

k
)

or
(k−1

k , 1
]
,

5. and yet again satisfiable in Łukasiewicz logic with constrained
propositions when dropping any one clause.

Results are shown in Table 1. We observe that Gödel logic is
much slower than Łukasiewicz logic as implemented in socratic,
likely because it performs mins and maxes between many argu-
ments throughout while Łukasiewicz logic instead performs sums

Table 1. k-SAT runtimes in seconds for socratic with
different configurations

Gödel Gödel Łuka. Łuka. Łuka.
k unsat. satisf. trivial unsat. satisf.

3 0.012 0.011 0.014 0.019 0.014
4 0.022 0.020 0.022 0.031 0.033
5 0.054 0.043 0.041 0.047 0.043
6 0.121 0.107 0.064 0.104 0.098
7 0.204 0.255 0.173 0.167 0.206
8 0.404 0.414 0.273 0.286 0.308
9 0.861 0.881 0.507 0.539 0.554
10 5.46 1.99 1.03 1.11 1.17
11 18.0 4.34 2.09 2.44 2.21
12 33.3 10.9 4.36 5.06 5.01
13 119 25.8 8.72 12.4 12.3
14 696 71.0 18.4 38.0 35.6

The columns pertain to items one through five above.

with simpler mins and maxes serving as clamps to the [0, 1] range.
Interestingly, the difference between unsatisfiable and satisfiable
in Gödel logic is significant; while the satisfiable problems have
one fewer clause, this is more likely explained by socratic finding a
feasible solution quickly. On the other hand, the unsatisfiable and
satisfiable problems (with constrained propositions) take roughly
the same amount of time for Łukasiewicz logic, though the
trivially satisfiable problem is quicker. The exponential increase
in runtime with respect to k is mostly explained by the fact
that each larger problem has twice as many clauses, but runtime
appears to be growing by slightly more than a factor of 2 per
each k.
6.2.1. Hájek tautologies. Hájek lists many axioms and tautologies
pertaining to a system of logic he describes as basic logic (BL),
consistent with a broad class of fuzzy logics, as well as a number
of tautologies specific to Łukasiewicz and Gödel logic, all of
which should have truth value exactly 1. We implement these
tautologies in socratic and test whether the empty theory can
entail each (�; {1}) in its respective logic where � is one of
the tautologies. The BL tautologies are divided into batches
pertaining to specific operations and properties, specifically
axioms, implication, conjunction, min, max, negation, associa-
tivity, equivalence, distributivity, and the unary Baaz-Monteiro
operator 4 defined by f4(s) = 1 if s = 1 else 0. In addition,
there are logic-specific batches of tautologies for Łukasiewicz and
Gödel logic. Each of the above BL batches complete successfully
for both logics and each of the logic-specific batches complete for
their respective logics and, as expected, fail for the other logic.
The runtime of individual tests is negligible; the entire test suite
of 82 tautologies run on both logics completes in just 2.911 s.
6.2.2. Boolean logic. We consider a formula � defined

('→)→ ((¬'→)→) [2]

which is valid in classical logic but is not valid in either
Łukasiewicz or Gödel logic. Conversely, constraining propo-
sitions ' and to have 0–1 truth values via the sentences
('; {0, 1}) and (; {0, 1}) into the theory succeeds in entailing
� in either logic.
6.2.3. Stress test. We consider the experimental configuration
given by Formula 2 for a query (�; S) with S = [.5, 1] ∪⋃{

(1
k+1 , 1

k) : 2 ≤ k ≤ 10, 000
}

and for ('; S′) and (; S′)

with S′ = 0 ∪
⋃{

(1− 1
k , 1− 1

k+1) : 2 ≤ k ≤ 10, 000
}

. We

PNAS 2024 Vol. 121 No. 21 e2309905121 https://doi.org/10.1073/pnas.2309905121 9 of 12

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

observe the runtime of socratic to be just 11.8 s for Gödel logic
and 9.38 s for Łukasiewicz logic. If we instead use closed intervals
throughout, measured runtimes are 17.4 s for Gödel and 9.29 s
for Łukasiewicz.

7. Dealing with Weights
In some settings, such as LNN (10), weights are assigned
to subformulas, where each real-valued weight determines the
influence, or importance, of its respective subformula. For
example, in the formula �1Y�2, the weight w1 might be assigned
to �1 and the weight w2 assigned to �2. If 0 < w1 = 2w2, this
might indicate that �1 is twice as important as �2 in evaluating
the value of �1 Y �2. Although it might seem natural for weights
to be nonnegative and sum to 1, this is not required and LNN
does not make this assumption.

As an example of a possible way to incorporate weights, assume
that we are using Łukasiewicz real-valued logic, where the value
of �1 Y �2 is min{1, s1 + s2}, when s1 is the value of �1 and s2
is the value of �2. If the weights of �1 and �2 are w1 and w2,
respectively, and if both w1 and w2 are nonnegative, then we
might take the value of �1 Y �2 in the presence of these weights
to be min{1, w1s1 + w2s2}.

We now show how easy it is to incorporate weights into
our approach while still preserving its sound and complete
axiomatization. To deal with weights, we define an expanded view
of what a formula is, defined recursively. Each atomic proposition
is a formula. If �1 and �2 are formulas, w1 and w2 are weights, and
� is a binary connective (such as &) then (�1 � �2, w1, w2) is a
formula. Here, w1 is interpreted as the weight of �1 and w2 as the
weight of �2 in the formula �1 � �2. We modify our definition
of subformula as follows. The subformulas of (�1 � �2, w1, w2)
are �1 and �2.

If � is a weighted binary connective, then f� now has four
arguments, rather than two. Thus, f�(s1, s2, w1, w2) is the value
of the formula (�1 � �2, w1, w2) when the value of �1 is s1, the
value of �2 is s2, the weight of �1 is w1, and the weight of �2
is w2. Similarly, f¬ now has two arguments.

Our axiom and inference rules are just as before, except that
we modify the definition of a good tuple for Rule 7. In the
sentence (�1, . . . , �k; S), let us say that the tuple (s1, . . . , sk) in
S is good if (a) for weighted binary connective �, we have sm =
f�(si, sj, w1, w2) when �m is (�i � �j, w1, w2), (b) and similarly
for weighted negation, and (c) for unweighted connectives, it is
the same as before.

We can extend Theorem 3.4 (soundness and completeness)
and Theorem 4.1 (closure under Boolean combinations) to deal
with our sentences (�1, . . . , �k; S) that include weights. The
proofs go through just as before, where we use the modified
notion of good tuple in Rule 7. Thus, we obtain the following
theorems.

Theorem 7.1. Our axiom system for MD-sentences as adapted for
weights is sound and complete.

Theorem 7.2. Each finite Boolean combination of sentences
(�1, . . . , �k; S) that include weights is equivalent to a single such
sentence.

What about the decision procedure that we shall give in
Section 6? Its use of a polynomial-time algorithm for linear
programming continues to work so long as weights wi are fixed
rational constants and the weighting functions are piecewise
linear, such as w1s1 + w2s2 (possibly including min or max).
As a result, the decision procedure and its implementation stand.

8. Issues in Treating the Values as Probabilities
In this section, where we treat the truth values as probabilities,
we are not using a standard real-valued logic but instead the rules
of probability. We interpret the truth value of each propositional
formula ' as being the probability of '. Assume that we have n
atomic propositions A1, . . . , An. There are then 2n members of
the Venn diagram, each given by a formula B1 ∩ · · · ∩Bn, where
Bi is either Ai or Āi, for 1 ≤ i ≤ n, where Āi is the complement
of Ai. Instead of conditions (a) and (b) in definition of a good
tuple for Rule 7, we have new restrictions (a′) and (b′), which say:
(a′) If every member of the Venn diagram appears as a formula
�i in (�1, . . . , �k, S), then the value assigned to each member of
the Venn diagram is nonnegative, and the sum of the values of
the members of the Venn diagram is 1, and (b′) if every member
of the Venn diagram appears as a formula �i in (�1, . . . , �k, S),
and if the formula �j is logically equivalent to the disjoint union
of the members �1, . . . , �m of the Venn diagram, then the value
of �j is the sum of the values of �1, . . . , �m. In particular, if �i
is logically false (such as being the conjunction of two different
members of the Venn diagram), then the value of �i is 0.

Note that this computation in (b′) gives the correct value
no matter what probabilistic dependence or independence holds
among the atomic propositions. For convenience, if we wish, we
can create new variables such as '1|'2 (whose value, intuitively,
is the value for '1 given '2), and then add a clause to the
conditions of a good tuple that says that if c is the sum of the
values of the members of the Venn diagram whose disjoint union
is logically equivalent to '1 ∩ '2, if d is the sum of the values
of the members of the Venn diagram whose disjoint union is
logically equivalent to '2, and if d 6= 0, then the value of '1|'2
is c/d . This is useful in Bayesian nets, where the probability of
an event is dependent on the probability of its parents.

The new inference rule that is our modification of Rule 7
is clearly sound, and the proof of completeness goes through as
before, but using our new notion of a good tuple. Just as we closed
under subformulas before applying Rule 7 in the completeness
proof earlier, here we include every member of the Venn diagram
in the MD-sentence in the proof of completeness.

Also, by a similar argument to that in the proof of Theorem 4.1,
we obtain closure under Boolean combinations. We thus have
the following two theorems, analogous to Theorems 7.1 and 7.2.

Theorem 8.1. Our axiom system for MD-sentences as adapted for
probabilities is sound and complete.

Theorem 8.2. Each finite Boolean combination of sentences
(�1, . . . , �k; S) that deal with probabilities is equivalent to a single
such sentence.

Note that we are not requiring that every sentence contains
as formulas every member of the Venn diagram, just as we did
not require in the propositional case that every sentence is closed
under subformulas. Instead, just as in the completeness argument
in the propositional case where we passed in the proof using the
axiomatization to a sentence closed under subformulas, here we
pass in the proof of completeness using the axiomatization to a
sentence that contains all members of the Venn diagram. Thus,
the fact that we are making use of the Venn diagram is “behind
the curtains”—the user need not know this when writing his
sentences. Of course, if the user applies Rule 7 himself, then he
needs to be aware of the Venn diagram.

Finally, we note that our sound and complete axiomatization
can give us a decision procedure analogous to that in Section 6.
In the special case where each atomic proposition Ai is assigned

10 of 12 https://doi.org/10.1073/pnas.2309905121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

a fixed value ai, Hailperin (27) gives a decision procedure that is
essentially based on the Venn diagram.

9. Related Work
Rosser (28) comments on the possibility of considering formulas
whose value is guaranteed to be at least �. For example, if
fY(s1, s2) = max{s1, s2} and f¬(s) = 1− s , then the truth value
of AY¬A is always at least 0.5. But Rosser rejects this approach,
since he notes that there are uncountably many choices for �,
but only countably many recursively enumerable sets (and an
axiomatization would give a recursively enumerable set of valid
formulas).

Belluci (29) investigates when the set of formulas with values
at least � is recursively enumerable. Font et al. (30) consider
the question of what they call “preservation of degrees of truth.”
They give a method for deciding, for a fixed �, if � having a value
at least � implies that ' has value at least �.

Novák (31) considered a logic with sentences that assign a
truth value to each formula of first-order real-valued logic. Thus,
using our notation, his sentences would be of the form ('; {�}),
where ' is a formula in first-order real-valued logic, and � is a
single truth value. He gave a sound and complete axiomatization.

Another interesting logic is rational Pavelka logic (RPL), an
expansion of the standard Łukasiewicz logic where rational truth-
constants are allowed in formulas. For example, if r is a rational
number, then the formula r → ' says that the value of ' is
at least r, and the formula ' → r says that the value of ' is
at most r. Therefore, this logic can express the MD-sentences
('; S), when S is the union of a finite number of closed intervals.
However, it cannot express strict inequalities. For example, it
cannot express that the value of ' is strictly greater than 0.5.†
This drawback can be solved (20) by expanding the logic with the
Baaz-Monteiro 4 operator (given 4x = 1 if x = 1 and 4x = 0
otherwise). Such an extension keeps finite-strongly completeness
(for Łukasiewicz logic). RPL was introduced by Hájek in ref. 13
as a simplification of the system proposed by Pavelka in ref. 32 in
which the syntax contained a truth-constant for each real number
of the interval [0,1]. Hájek showed that an analogous logic could
be presented as an expansion of Łukasiewicz propositional logic
with truth-constants only for the rational numbers in [0,1] and
gave a corresponding completeness theorem. Moreover, first-
order fuzzy logics with real or rational constants have also been
deeply studied starting from Novák’s extension of Pavelka’s logic
to a first-order predicate language in ref. 33 (see, e.g., ref. 34).

Each of refs. 23, 35, and 36 gives decision procedures
that partially cover the situation we allow in Section 6. The
former two support only Łukasiewicz logic. The third, like
our decision procedure, works for a variety of logics, though
it is explicitly established in ref. 23 that their approach does
not support discontinuous operators. Accordingly, unlike our
decision procedure, their approach does not work for Gödel logic
given its discontinuous→ operator.

†This follows from the stronger fact that if A1 , . . . , Ar are the atomic propositions, ' is a
formula, and G is the set of all value assignments to the atomic propositions that give '
the truth value 1, then since the operators of standard Łukasiewicz logic are continuous
(and so the value of ' is a continuous function of the value of the atomic propositions), it
follows that {(g(A1), · · · , g(Ar)) : g ∈ G} is a closed subset of [0,1]r . Note that if r = 0.5,
then even though the formula A→ r has the value 1 when the value a of A is at most 0.5,
the negation ¬(A → r) does not have the value 1 when a > 0.5; instead it has the value
a − 0.5.

In addition, Vidal (24) and Ansótegui et al. (37) present
decision procedures based on SMT. The former of these imple-
ments mNiBLoS, a versatile means of defining and reasoning
in a broad class of fuzzy logics as thoroughly considered in
ref. 13. Their approach, however, does not inherently support
reasoning in terms of truth value intervals as SoCRAtic does
for MD-sentences. Ansótegui et al. (37) presents special cases
handling using the Z3 SMT solver for Łukasiewicz and Gödel
logic and, in particular, for the finite multivalued cases of these.
This specialized approach demonstrates speedup over Vidal’s (24)
mNiBLoS but effectively solves a different problem and so is less
directly applicable to our task.

There are various papers in the algebraic framework of residu-
ated lattices and the proof-theoretic framework of hypersequents.
For example, see ref. 38. Our approach does not seem to extend
to such real-valued logics.

10. Conclusions
We give a sound and finite-strongly complete axiomatization
for a rich class of multidimensional sentences about real-valued
formulas. By being parameterized, our axiomatization covers a
large set, including all of the common real-valued logics in the
literature. Our axiomatization allows us to include weights on
formulas and extends to probabilities. Having multidimensional
sentences is the key to the power of our approach. An interesting
open problem is to make use of multidimensional sentences in
other contexts.

We provide a decision procedure that covers a subset of these
real-valued logics. However, decision procedures going beyond
this subset remain future work. Further, the procedure shown
should be thought of as a baseline or proof of concept only, not
intended to be efficient in practice. Designing efficient inference
procedures for real-valued logics is a major area for further
development.

Our results give us a way to establish such properties for
neuro-symbolic systems that aim or purport to perform logical
inference with real values. Because logical neural networks (10)
are exactly a weighted real-valued logical system implemented
in neural network form, an important immediate upshot of
our results for the weighted case is that they provide provably
sound and complete logical inference for LNN. Such a result has
not previously been established for a neuro-symbolic approach
to our knowledge. It is an open question as to whether deep
learning models trained “in the wild” [i.e., not deliberately as
in LNN (11)] achieve logical behavior. While one of our main
motivations was to pave the way forward for AI systems, our
results are fundamental, filling a long-standing gap in a very old
literature, and can be applied well beyond AI.

Data, Materials, and Software Availability. There are no data underlying
this work.

ACKNOWLEDGMENTS. We are grateful to Marco Carmosino, who improved
the writing in this paper by giving us many helpful comments, and to
Guillermo Badia, Ken Clarkson, Didier Dubois, Phokion Kolaitis, Carles Noguera,
and Henri Prade for helpful comments. Finally, we are grateful to Lluis Godo,
Chris Fermüller, and George Metcalfe for confirming the novelty of our approach
and for thoroughly reviewing this manuscript and suggesting many insightful
revisions.

1. G. Boole, An Investigation of the Laws of Thought: On Which Are Founded the Mathematical
Theories of Logic and Probabilities (Walton and Maberly, 1854), vol. 2.

2. L. A. Zadeh, Fuzzy logic and approximate reasoning. Synthese 30, 407–428 (1975).

3. V. Novák, A formal theory of intermediate quantifiers. Fuzzy Sets Syst. 159, 1229–1246
(2008).

4. G. Epstein, Multiple-Valued Logic Design: An Introduction (CRC Press, 1993).

PNAS 2024 Vol. 121 No. 21 e2309905121 https://doi.org/10.1073/pnas.2309905121 11 of 12

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

5. R. Fagin, A. Lotem, M. Naor, Optimal aggregation algorithms for middleware. J. Comput. Syst. Sci.
66, 614–656 (2003).

6. L. Serafini, Ad. Garcez, Logic tensor networks: Deep learning and logical reasoning from data and
knowledge. arXiv [Preprint] (2016). https://doi.org/10.48550/arXiv.1606.04422 (Accessed 25
August 2022).

7. S. Badreddine, Ad. Garcez, L. Serafini, M. Spranger, Logic tensor networks. Artif. Intell. 303, 103649
(2022).

8. S. H. Bach, M. Broecheler, B. Huang, L. Getoor, Hinge-loss Markov random fields and probabilistic
soft logic. J. Mach. Learn. Res. 18, 3846–3912 (2017).

9. W. Cohen, F. Yang, K. R. Mazaitis, TensorLog: A probabilistic database implemented using deep-
learning infrastructure. J. Artif. Intell. Res. 67, 285–325 (2020).

10. R. Riegel et al., Logical neural networks. arXiv [Preprint] (2020). https://doi.org/10.48550/arXiv.
2006.13155 (Accessed 25 August 2022).

11. S. Lu et al., “Training logical neural networks by primal-dual methods for neuro-symbolic
reasoning” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP
2021), Toronto, ON, Canada, June 6–11, 2021 (IEEE, 2021), pp. 5559–5563.

12. A. Di Nola, A. Lettieri, On normal forms in Łukasiewicz logic. Arch. Math. Logic 43, 795–823 (2004).
13. P. Hájek, Metamathematics of Fuzzy Logic (Springer Science & Business Media, 1998), vol. 4.
14. P. Hájek, D. Svedja, A strong completeness theorem for finitely axiomatized fuzzy theories. Tatra

Mount. Math. J. 12, 213–219 (1997).
15. A. Rose, J. Rosser, Fragments of many-valued sentential calculi. Trans. Am. Math. Soc. 87, 74–80

(1958).
16. C. C. Chang, Algebraic analysis of infinite valued logic. Trans. Am. Math Soc. 88, 467–490 (1958).
17. C. C. Chang, A new proof of the completeness of the Łukasiewicz axioms. Trans. Am. Math Soc. 93,

74–90 (1959).
18. G. Takeuti, S. Titani, Fuzzy logic and fuzzy set theory. Arch. Math. Logic 32, 1–32 (1992).
19. N. Rescher, Many-Valued Logic (McGraw-Hill, 1969).
20. F. Esteva, L. Godo, E. Marchioni, “Chapter VIII: Fuzzy logics with enriched language” in Handbook of

Mathematical Fuzzy Logic, P. Cintula, P. Hájek, C. Noguera, Eds. (College Publications, 2011), vol.
2, pp. 627–711.

21. N. V. Murray, E. Rosenthal, “Signed formulas: A liftable meta-logic for multiple-valued logics” in
International Symposium on Methodologies for Intelligent Systems, J. Komorowski, Z. W. Raś, Eds.
(Springer, 1993), pp. 275–284.

22. M. Baaz, R. Zach, Eds., “Compact propositional Gödel logics” in Proceedings of 28th International
Symposium on Multiple Valued Logic (IEEE Computer Society Press, 1998), pp. 108–113.

23. R. Hähnle, Many-valued logic and mixed integer programming. Ann. Math. Artif. Intell. 12,
231–263 (1994).

24. A. Vidal, MNiBLoS: A SMT-based solver for continuous t-norm based logics and some of their modal
expansions. Inf. Sci. 372, 709–730 (2016).

25. M. Bofill, F. Manyà, A. Vidal, M. Villaret, New complexity results for Łukasiewicz logic. Soft Comput.
23, 2187–2197 (2019).

26. S. Preto, F. Manyà, M. Finger, “Benchmarking Łukasiewicz logic solvers with properties of neural
networks” in 2023 IEEE 53rd International Symposium on Multiple-Valued Logic (ISMVL) (IEEE,
2023), pp. 158–163.

27. T. Hailperin, Best possible inequalities for the probability of a logical function of events. Am. Math.
Monthly 72, 343–359 (1965).

28. J. B. Rosser, Axiomatization of infinite valued logics. Logique Anal. 3, 137–153 (1960).
29. L. Belluce, Further results on infinite valued predicate logic. J. Symbolic Logic 29, 69–78

(1964).
30. J. M. Font, À. J. Gil, A. Torrens, V. Verdu, On the infinite-valued Łukasiewicz logic that preserves

degrees of truth. Arch. Math. Logic 45, 835–868 (2006).
31. V. Novák, Fuzzy logic with extended syntax. Handb. Math. Fuzzy Logic 3, 1063–1104 (2015).
32. J. Pavelka, On fuzzy logic i, ii, iii. Z. Math. Logik Grundlagen Math. 29, 45–52, 119–134, 447–464

(1979).
33. V. Novák, On the syntactico-semantical completeness of first-order fuzzy logic, part I (syntax and

semantic), part II (main results). Kybernetika 26, 47–66, 134–154 (1990).
34. F. Esteva, L. Godo, C. Noguerra, First-order t-norm based fuzzy logics with truth-constants:

Distinguished semantics and completeness properties. Ann. Pure Appl. Logic 161, 185–202
(2009).

35. G. Beavers, Automated theorem proving for Łukasiewicz logics. Stud. Logica 52, 183–195
(1993).

36. D. Mundici, A constructive proof of McNaughton’s theorem in infinite-valued logic. J. Symbolic
Logic 59, 596–602 (1994).

37. C. Ansótegui, M. Bofill, F. Manyà, M. Villaret, Automated theorem provers for multiple-valued logics
with satisfiability modulo theory solvers. Fuzzy Sets Syst. 292, 32–48 (2016).

38. G. Metcalfe, F. Montagna, Substructural fuzzy logics. J. Symbolic Logic 72, 834–864 (2007).

12 of 12 https://doi.org/10.1073/pnas.2309905121 pnas.org

D
ow

nl
oa

de
d

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g
by

 I
B

M
 R

E
SE

A
R

C
H

 D
IV

IS
IO

N
 L

IB
R

A
R

Y
 T

J
W

A
T

SO
N

 R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n
D

ec
em

be
r

9,
 2

02
4

fr
om

 I
P

ad
dr

es
s

12
9.

41
.8

6.
7.

https://doi.org/10.48550/arXiv.1606.04422
https://doi.org/10.48550/arXiv.2006.13155
https://doi.org/10.48550/arXiv.2006.13155

	Models, Formulas, and Sentences
	Axioms and Inference Rules
	Soundness and Completeness of MD-Sentences
	Boolean Combinations of MD-Sentences
	Reducing the Dimensionality
	SoCRAtic: A Decision Procedure
	Dealing with Weights
	Issues in Treating the Values as Probabilities
	Related Work
	Conclusions

