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Interest in logics with some notion of real-valued truths has ex-
isted since at least Boole, and has been increasing in AI due to the
emergence of neuro-symbolic approaches, though often their logi-
cal inference capabilities are characterized only qualitatively. We
provide foundations for establishing the correctness and power of
such systems. We introduce a rich, novel class of multidimensional
sentences, with a sound and complete axiomatization that can be
parametrized to cover many real-valued logics, including all the com-
mon fuzzy logics, and extend these to weighted versions, and to the
case where the truth values are probabilities. Our multidimensional
sentences form a very rich class. Each of our multidimensional sen-
tences describes a set of possible truth values for a collection of for-
mulas of the real-valued logic, including which combinations of truth
values are possible. Our completeness result is strong, in the sense
that it allows us to derive exactly what information can be inferred
about the combinations of truth values of a collection of formulas
given information about the combinations of truth values of a finite
number of other collections of formulas.
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We give a decision procedure based on linear programming for decid-
ing, for certain real-valued logics and under certain natural assump-
tions, whether a set of our sentences logically implies another of our
sentences. The generality of this work, compared to many previous
works on special cases, may provide insights for both existing and
new real-valued logics whose inference properties have never been
characterized. This work may also provide insights into the reason-
ing capabilities of deep learning models.
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Formalization of the idea of real-valued logics (a term which1

is perhaps not standard but we will use to refer to various2

proposals that extend classical logics to ones where truths can3

take arbitrary values in the range [0, 1]) is old and fundamen-4

tal, going back to the origins of formal logic. It is not well5

known that Boole himself invented a probabilistic logic in the6

19th century (1), where formulas were assigned truth values7

corresponding to probabilities. It was used in AI to model8

the semantics of vague concepts for commonsense reasoning9

by expert systems (2). Real-valued logics have appeared in10

linguistics to model certain natural language phenomena (3),11

in hardware design to deal with multiple stable voltage levels12

(4), and in databases to deal with queries that are composed of13

multiple graded notions, such as the redness of an object, that14

can range from 0 (“not at all red”) to 1 (“completely red”)15

(5). Despite all this, while definitions of logical correctness16

and power (generally, soundness and completeness) are well17

established and corresponding procedures for theorem proving18

having those properties are abundant for classical logics, the19

equivalents for real-valued logics are comparatively limited.20

Though some formal properties have been established for cer-21

tain special cases of real-valued logics, the analysis is typically22

delicate in that it cannot easily be extended if the logic is 23

extended or changed, or may only show weaker properties 24

than possible. We discuss previous works in Section 9. 25

Recent years have seen growing interest in AI in approaches 26

for augmenting the capabilities of learning-based methods with 27

those of reasoning, often broadly referred to as neuro-symbolic 28

(though they may not be strictly neural). One of the key 29

goals that neuro-symbolic approaches have at their root is 30

logical inference, or reasoning. However, the representation of 31

classical 0–1 logic (where truth values of sentences are either 32

0, representing “False”, or 1, representing “True”) is gener- 33

ally insufficient for this goal because representing uncertain 34

knowledge and conclusions is essential to AI. In order to merge 35

with the ideas of neural learning, the truth values dealt with 36

must be real-valued (we shall take these to be real numbers 37

in the interval [0, 1], where intuitively, 0 means “completely 38

false”, and 1 means “completely true”), whether the uncer- 39

tainty semantics are those of probabilities, subjective beliefs, 40

neural network activations, or fuzzy set memberships. For this 41

reason, many major approaches have turned to real-valued 42

logics. Logic tensor networks (6, 7) define a logical language 43

on real-valued vectors corresponding to groundings of terms 44

computed by a neural network, which can use any of the com- 45

mon real-valued logics (e.g., Łukasiewicz, product, or Gödel 46

logic) for its connectives (e.g., &, Y, ¬, and →). Probabilis- 47

tic soft logics (8) draw a correspondence of their approach 48

based on Markov random fields (MRFs) with satisfiability of 49

statements in a real-valued logic (Łukasiewicz). Tensorlog 50

(9), also based on MRFs but implemented in neural network 51

frameworks, draws a correspondence of its approach to the 52
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use of connectives in a real-valued logic (product). Logical53

Neural Networks (LNN) (10, 11) represent a methodology54

which draws a correspondence between activation functions55

of neural networks and connectives in real-valued logics. To56

complete a full correspondence between neural networks and57

statements in real-valued logic, LNN defines a class of real-58

valued logics allowing weighted inputs, which represent the59

relative influence of subformulas. This follows the earlier ob-60

servation of this connection between neural networks based61

on rectified linear units (ReLU) and weighted real-valued log-62

ics in (12). Notably, work on large language models based63

on such networks has shown anecdotal examples that appear64

to indicate the capability of sometimes-successful reasoning,65

though the extent and underlying mechanisms still remain66

open mysteries. While widely regarded as fundamental to the67

goal of AI, the reasoning capabilities of the aforementioned68

systems are typically made qualitatively versus quantitatively69

and mathematically. While learning theory (roughly, what70

it means to perform learning) is well articulated for a large71

class of models and, for 0–1 logic, what it means to perform72

reasoning is well studied, reasoning is surprisingly not well73

formalized for a large class of real-valued logics. As reasoning74

becomes an increasing goal of learning-based work, it becomes75

important to have a solid mathematical footing for it.76

Soundness and completeness. In this paper, there are two77

levels of logic. In the “inner” layer, we have formulas of the78

real-valued logic with its logical connectives. In particular, in79

this inner layer, we shall use & for “and” and Y for “or”, as80

is done in (13). In the “outer” layer, we have a novel class of81

multi-dimensional sentences about the inner real-valued logic,82

such as saying which truth values a given real-valued formula83

may attain, or even more, what combinations of values several84

real-valued formulas may attain. For these sentences in the85

outer layer, which take on only the classical values 0 and 186

for False and True, respectively, we in particular make use of87

the traditional logical symbols ∧ for “and” and ∨ for “or”. We88

remark that, somewhat confusingly, the symbols ∧ and ∨ are89

often used in real-valued logics for weaker versions of “and”90

and “or” than that given by & and Y, which we do not have91

need to discuss in this paper.92

Let us say that an axiomatization of a logic is finite-strongly93

complete if whenever Γ is a finite set of sentences in the (outer)94

logic and γ is a single sentence in the (outer) logic that is a95

logical consequence of Γ (that is, every model of Γ is a model of96

γ), then there is a proof of γ from Γ using the axiomatization.97

An axiomatization is weakly complete if this holds for Γ = ∅.98

That is, an axiomatization is weakly complete if whenever99

γ is a valid sentence (true in every model), then there is100

a proof of γ using the axiomatization. The reader might101

think we can obtain a finite-strongly complete axiomatization102

from a weakly complete axiomatization by believing that if ϕ1103

logically implies ϕ2, then the formula ϕ1 → ϕ2 is valid. This104

is true for Gödel logic (as noted in (14); see also (13)), but it is105

false for Łukasiewicz logic. A counterexample in Łukasiewicz106

logic is obtained (as the reader can easily verify) by taking ϕ1107

to be the formula A and ϕ2 to be the formula A&A.108

Early axiomatizations of real-valued logics in the literature109

were typically weakly complete, but now have often been im-110

proved to finite-strongly complete. As Di Nola and Lettieri111

point out in their paper on a normal form for Łukasiewicz logic112

(12), Rose and Rosser (15) gave a syntactic proof of weak com-113

pleteness for an axiomatization of Łukasiewicz logic, and later 114

Chang gave an algebraic proof (16, 17). Hájek and Svedja (14) 115

later gave a finite-strongly complete axiomatization. There is 116

also a finite-strongly complete axiomatization for Gödel logic 117

(18). In Section 3, we shall show why it is necessary to assume 118

that Γ is finite in the definition of finite-strongly completeness. 119

From now on (except in the Section 9 on related work) we use 120

“complete” to mean “finite-strongly complete”. 121

All previous axiomatizations we have discussed so far deal 122

only with formulas, and not with the truth values assigned 123

to formulas. Thus, they may infer when a formula γ follows 124

from a finite set Γ of formulas (that is, whether γ necessarily 125

has truth value 1 when every formula in Γ has truth value 126

1), but not whether a certain arbitrary truth value or set of 127

possible truth values for γ can be inferred from information 128

about the possible truth values of members of Γ. A limited 129

form of such inference can be done for Łukasiewicz real-valued 130

logic by combining it with rational Pavelka logic (see Section 9 131

for a discussion on this). 132

This paper. We introduce a rich, novel class of multidimen- 133

sional sentences ("MD-sentences") with a sound and complete 134

axiomatization. 135

1. These sentences can say what the set S of possible values 136

is for a formula σ. This set S can be a singleton {s} 137

(meaning that the truth value of σ is s), or S can be an 138

interval, or a union of intervals, or in fact an arbitrary 139

subset of [0, 1], e.g., the set of rational numbers in [0, 1]. 140

2. Our sentences can give not only the possible truth values 141

of formulas, but the interactions between these values. 142

For example, if σ1 and σ2 are formulas, our sentences can 143

not only say what the possible truth values are for each 144

of σ1 and σ2, but also how they interact: thus, if s1 is 145

the truth value of σ1 and s2 is the truth value of σ2, then 146

there is a sentence in our logic that says (s1, s2) must 147

lie in the set S of ordered pairs, where S is an arbitrary 148

subset of [0, 1]2. 149

3. Unlike the other axiomatizations mentioned earlier, our 150

axiomatization can be extended to include the use of 151

weights for subformulas (where, for example, in the for- 152

mula σ1 Y σ2, the subformula σ1 is considered twice as 153

important as the subformula σ2). 154

A surprising feature of our axiomatization is that it is parame- 155

terized, so that this one axiomatization is sound and complete 156

for a large class of real-valued logics including all of the most 157

common fuzzy logics and even logics that do not obey the 158

standard restrictions on fuzzy logics (such as conjunction be- 159

ing commutative). Previous axiomatizations in the literature 160

required a separate set of axioms for each real-valued logic (for 161

example, one of the axioms for Łukasiewicz logic is σ ↔ ¬¬σ, 162

and one of the axioms for Gödel logic is σ ↔ (σ & σ)). Such 163

axiomatizations correspond to fixed truth evaluation functions 164

associated with each connective. By contrast, for our axioma- 165

tization, evaluation functions may be arbitrary, where k-ary 166

connectives map [0, 1]k into [0, 1]. 167

In fairness and giving credit to the completeness results 168

in the literature for various real-valued logics, it should be 169

noted that since our MD-sentences are much more expressive 170

than those logics, the soundness and completeness for our 171

parametric axiom system for MD-sentences does not supersede 172
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or entail soundness and completeness results for less expressive173

systems. Showing that a proof system featuring only modus174

ponens and a number of axiomatic formula schemes is (sound175

and) complete for a specific logic is, in general, a much harder176

task than we faced, where we could make use of the vast177

generality of one of our inference rules (Rule 7 below).178

Throughout this paper, we take the domain of each function179

in the real-valued logic to be [0, 1] or [0, 1]2 and the range180

to be [0, 1]. This is a common assumption for many real-181

valued logics, but all of our results go through with obvious182

modifications if the domains are Dk for possibly multiple183

choices of arity k and range D, for arbitrary subsets D of184

the reals. We note that real-valued logic can be viewed as185

a special case of multi-valued logic (19), although in multi-186

valued logic there is typically a finite set of possible truth187

values, not necessarily linearly ordered.188

We also provide a decision procedure for deciding whether189

a set of our sentences logically implies another of our sentences190

for certain common real-valued logics under certain natural191

assumptions. We implement the decision procedure, dubbed192

SoCRAtic (for Sound and Complete Real-valued Axiomatic193

solver), which we describe in detail in Section 6. While our194

sentences allow a wide variety of real-valued logics, as does our195

sound and complete axiomatization, this decision procedure196

depends heavily on the choice of logical connectives and in197

particular is tailored towards Łukasiewicz and Gödel logic,198

though it can be adapted to support product logic as well.199

Overview. In Section 1, we give our basic notions, including200

what a model is and what a sentence is. In Section 2, we give201

our (only) axiom and our inference rules. In Section 3, we give202

our soundness and completeness theorem. In Section 4, we203

give a theorem that says that each finite Boolean combination204

of our sentences is equivalent to a single one of our sentences205

which helps to show the robustness of our class of sentences. In206

Section 5, we discuss possible reductions of the dimensionality207

of our sentences. In Section 6, we give the decision procedure.208

In Section 7, we show how to extend our methodology to209

incorporate weights. In Section 8, we discuss how to deal with210

treating the truth values as probabilities. In Section 9, we211

discuss related work. In Section 10, we give our conclusions212

and review their implications for AI approaches.213

1. Models, formulas, and sentences214

We assume a finite set of atomic propositions. These can be215

thought of as the input layer of a neural net, i.e., nodes with no216

inputs from other neurons. A model M is an assignment gM217

of truth values to the atomic propositions. Thus, M assigns a218

value gM (A) ∈ [0, 1] to each atomic proposition A.219

We now define the set F of logical formulas. For simplicity,220

we assume for now that there are just four logiclal connectives:221

three binary connectives, namely conjunction (denoted by &),222

disjunction (denoted by Y, and implication (denoted by →),223

and one unary connective, namely negation (denoted by ¬).224

However, our definiitions and results extend easily to arbitrary225

sets of logical connectives of arbitrary arity.226

The set F of logical formulas is defined inductively. Every227

atomic proposition is a logical formula. If σ1 and σ2 are logical228

formulas, then so are (a) σ1 & σ2, (b) σ1 Y σ2, (c) σ1 → σ2,229

and (d) ¬σ1.230

Two especially useful real-values logics for logical neural231

networks are Łukasiewicz logic and Gödel logic. Let σ1 and232

σ2 be formulas with respective truth values s1 and s2. For 233

Łukasiewicz logic, the truth value of σ1 & σ2 is max{0, s1 + 234

s2− 1}, the truth value of σ1 Yσ2 is min{1, s1 + s2}, the truth 235

value of σ1 → σ2 is min{1, 1− s1 + s2}, and the truth value 236

of ¬σ1 is 1 − s1. In Gödel logic, the truth value of σ1 & σ2 237

is min{s1, s2}, the truth value of σ1 Y σ2 is max{s1, s2}, the 238

truth value of σ1 → σ2 is 1 if s1 ≤ s2 and s2 otherwise, and 239

the truth value of ¬σ1 is 1 if s1 = 0 and 0 otherwise. 240

If α is a binary connective, then by fα(s1, s2) we mean 241

the value of σ1 ασ2 if the value of σ1 is s1 and the value 242

of σ2 is s2. For example, in Łukasiewicz logic, f&(s1, s2) is 243

max{0, s1 + s2 − 1}. For the unary connective ¬, by f¬(s1) 244

we mean the value of ¬σ1 if the value of σ1 is s1. For example, 245

in Łukasiewicz logic, f¬(s1) is 1− s1. 246

We now define by induction on the structure of formulas 247

what the truth value of a formula in F is in a model M , for a 248

given real-valued logic. By definition of a model, we know the 249

truth value in M of an atomic proposition. If α is a binary 250

connective then the truth value in M of σ1 ασ2 is fα(s1, s2) 251

if the truth value in M of σ1 is s1 and the truth value in M 252

of σ2 is s2. The truth value in M of ¬σ1 is f¬(s1) if the truth 253

value in M of σ1 is s1. 254

When considering only formulas with truth value 1, as 255

is common when giving an axiomatization of a real-valued 256

logic, the convention is to consider a sentence to be simply a 257

member of F . What if we want to take into account values 258

other than 1? It is tempting to think we can simply annotate 259

formulas with truth values or sets of truth values, for instance 260

with sentences of the form (σ;S) where σ ∈ F and S ⊆ [0, 1], 261

which indicates the truth value of ϕ is in S. In fact, we 262

note that formulas equivalent to (σ;S) have been considered 263

in the literature (20, 21) in the special case where S is an 264

interval. Our sentences go a step further and annotate groups 265

of formulas with sets of tuples of truth values. 266

We take a sentence γ to be an expression of the form 267

(σ1, . . . , σk;S), where σ1, . . . , σk ∈ F are the components of γ 268

and where S ⊆ [0, 1]k is the information set of γ. The intuition 269

is that (σ1, . . . , σk;S) says that if the value of each σi is si, for 270

1 ≤ i ≤ k, then (s1, . . . , sk) ∈ S. Also S may contain other 271

tuples of truth values (some possibly inconsistent, such as 272

having the value of A&B being strictly higher than the truth 273

value of A). Inference then proceeds to form new sentences 274

with restricted sets S in attempt to identify the si for 1 ≤ i ≤ k 275

or, alternatively, prove that none can exist. 276

Note that we are not restricting the information sets S 277

to be simple, such as being the union of a finite number of 278

intervals (and in the case of Łukasiewicz or Gödel logic, for 279

the intervals to have rational endpoints). Such a restriction is 280

common in the literature for sentences (ϕ;S), as discussed in 281

Section 9. 282

Unlike our formulas, which can take on arbitrary values in 283

[0, 1], our sentences take on only the values True and False. 284

We refer to our sentences as multidimensional sentences, or 285

for short MD-sentences.∗ For a fixed k, we refer to the MD- 286

sentence (σ1, . . . , σk;S) as k-dimensional. The class of MD- 287

sentences is robust. In particular, Theorem 4.2 says that each 288

finite Boolean combination of MD-sentences is equivalent to 289

∗Note that we are not saying that the logic is multidimensional (which could mean that the values
taken on by variables are vectors, not just numbers), but instead we are saying that the sentences
in our “outer” logic are multidimensional. The “inner” logic we work with in this paper is real-valued,
and real-valued logic has been heavily studied. What is novel in our paper are our multidimensional
sentences.
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a single MD-sentence. We give a sound and (finite-strongly)290

complete axiomatization that is parameterized to deal simul-291

taneouly with many real-valued logics. This axiomatization292

allows us to derive exactly what information can be inferred293

about the combinations of truth values of a collection of formu-294

las given information about the combinations of truth values295

of other collections of formulas.296

Given a model M and a sentence γ = (σ1, . . . , σk;S), we297

now say what it means for M to satisfy γ. If the value in M of298

σi is si (as defined above) for 1 ≤ I ≤ k, and if (s1, . . . , sk) ∈ S,299

then we say that M satisfies (or is a model of ) γ, written300

M � γ. Note that if γ is satisfiable, i.e., if γ has some modelM ,301

then S 6= ∅.302

2. Axioms and inference rules303

We now give our axiom and inference rules. Each of our rules304

is of the form “from A infer B” or “from A infer B where ...”.305

We refer to A as the premise and B as the conclusion.306

1. We have only one axiom: (σ; [0, 1]). Axiom 1 guarantees307

that all values are in [0, 1].308

2. Our first inference rule is: if π is a permutation of 1, . . . , k,309

then from (σ1, . . . , σk;S) infer (σπ(1), . . . , σπ(k);S′),310

where S′ = {(sπ(1), . . . , sπ(k)) : (s1, . . . , sk) ∈ S}. Rule 2311

simply permutes the order of the components.312

3. Our next inference rule is: from (σ1, . . . , σk;S) infer313

(σ1, . . . , σk, σk+1, . . . , σm;S × [0, 1]m−k). Rule 3 extends314

(σ1, . . . , σk;S) to include σk+1, . . . , σm with no nontrivial315

information being given about the new components.316

4. Our next inference rule is: from (σ1, . . . , σk;S1) and317

(σ1, . . . , σk;S2) infer (σ1, . . . , σk;S1 ∩ S2). Rule 4 en-318

ables us to join the information in (σ1, . . . , σk;S1) and319

(σ1, . . . , σk;S2).320

5. Our next inference rule is the following (where 0 < r < k):321

from (σ1, . . . , σk;S) infer (σ1, . . . , σk−r;S′), where S′ =322

{(s1, . . . , sk−r) : (s1, . . . , sk) ∈ S}. Intuitively, S′ is the323

projection of S onto the first k − r components. Rule 5324

enables us to select information about σ1, . . . , σk−r from325

information about σ1, . . . , σk.326

6. Our next inference rule is: from (σ1, . . . , σk;S) infer327

(σ1, . . . , σk;S′) if S ⊆ S′. Rule 6 says that we can go328

from more information to less information. The intuition329

is that smaller information sets are more informative.330

We now give an inference rule that depends on the real-331

valued logic under consideration. For each connective α, let fα332

be as defined in Section 1. In the sentence (σ1, . . . , σk;S), let us333

say that the tuple (s1, . . . , sk) in S is good if (a) sm = fα(si, sj)334

whenever σm is σi ασj and α is a binary connective (such as335

&), and (b) sj = f¬(si) whenever σj is ¬σi. Note that being336

“good” is a local property of a tuple s in S (that is, it depends337

only on the tuple s and not on the other tuples in S). Of338

course, if the real-valued logic under consideration has other339

connectives, possibly of higher arity, then we would modify340

the definition of a good tuple in the obvious way.341

7. We then have the following inference rule: from342

(σ1, . . . , σk;S) infer (σ1, . . . , σk;S′) when S′ is the set343

of good tuples of S. Rule 7 is our key rule of inference.344

Let γ1 be the premise (σ1, . . . , σk;S) and let γ2 be the 345

conclusion (σ1, . . . , σk;S′) of Rule 7. As we shall discuss 346

later, γ1 and γ2 are logically equivalent (that is, every 347

model of one is a model of the other), and S′ is as small 348

as possible so that γ1 and γ2 are logically equivalent. 349

A simple example of a valid sentence (that is, a sen- 350

tence rue in every model) is (A,B,A Y B;S) where S = 351

{(s1, s2, s3) : s1 ∈ [0, 1], s2 ∈ [0, 1], s3 = fY(s1, s2)}. This 352

is derived from the valid sentence (A,B,A Y B; [0, 1]3) by 353

applying Rule 7. 354

3. Soundness and completeness of MD-sentences 355

We need the notion of closure under subformulas. If α is a 356

binary connective, then the subformulas of σ1 ασ2 are σ1 and 357

σ2. The subformula of ¬σ is σ. Let Γ be a set of MD-sentences. 358

We define the closure G of Γ under subformulas as follows. 359

For each sentence (γ1, . . . , γm;S) in Γ, the set G contains 360

γ1, . . . , γm, and for each formula γ in G, the set G contains 361

every subformula of γ. In particular, G contains every atomic 362

proposition that appears inside the components of Γ. 363

Let Γ be a finite set of MD-sentences, and let γ be a 364

single MD-sentence. We write Γ � γ if every model of Γ is 365

a model of γ. We write Γ ` γ if there is a proof of γ from 366

Γ, using our axiom system. Soundness says “Γ ` γ implies 367

Γ � γ”. Completeness says “Γ � γ implies Γ ` γ” (earlier, we 368

referred to this notion as “finite-strongly completeness”). In 369

this section, we shall prove that our axiom system is sound 370

and complete for MD-sentences. 371

We now explain why it is necessary, in the case of 372

Łukasiewicz logic, to assume that Γ is finite in the defini- 373

tion of completeness. (In our explanation, we make use of 374

ideas from (13).) Let Ak denote A & A & · · · & A, where A 375

appears k times. Let Γ be the infinite set of sentences con- 376

taining (A; [0, 1)) and (B → Ak; {1}) for each integer k ≥ 1. 377

Thus, Γ says that the value of A is strictly less than 1 and 378

that B → Ak takes on the value 1 for each k ≥ 1. Let γ be 379

(B; {0}), which says that B takes on the value 0. We now show 380

that Γ logically implies γ. Assume not. Then there is a model 381

M where Γ holds but γ does not, and so B does not take the 382

value 0. In this model M , since Γ holds, the value of A is less 383

than 1. It then follows from the definition of conjunction in 384

Łukasiewicz logic that in the model M , there is k such that 385

Ak has value 0. From (B → Ak; {1}) this then implies that 386

in the model M , the value of B is 0, a contradiction. Hence, 387

Γ logically implies γ. Because our proofs are of finite length, 388

there cannot be a proof of γ from Γ, since this would give a 389

proof of γ from a finite subset of Γ, but no finite subset of Γ 390

logically implies τ . In the case of Gödel logic, it is all right 391

for Γ to be infnite, since Gödel logic satisfies a compactness 392

theorem, which says that if Γ � γ, then there is a finite subset 393

Γ′ of Γ such that Γ′ � γ (22). 394

We define a special property of certain MD-sentences, that 395

is used in a crucial manner in our completeness proof. Let us 396

say that a sentence (σ1, . . . , σk;S) is minimized if whenever 397

(s1, . . . , sk) ∈ S, then there is a model M of (σ1, . . . , σk;S) 398

such that for 1 ≤ i ≤ k, the value of σi in M is si. 399

Thus, (s1, . . . , sk) ∈ S if and only if there is a model M 400

of (σ1, . . . , σk;S) such that for 1 ≤ i ≤ k, the value of σi in 401

M is si. We use the word “minimized”, since intuitively, S is 402

as small as possible. Note that there can be no algorithm for 403
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deciding if an MD-sentence is minimized, since there are un-404

countably many MD-sentences (because there are uncountably405

many choices for S).406

Our completeness proof makes use of the following lemmas.407

Lemma 3.1 Let (σ1, . . . , σk;S) be the premise of Rule 7. As-408

sume that G = {σ1, . . . , σk} is closed under subformulas (so409

that in particular, every atomic proposition that appears in-410

side a member of G is a member of G). Then the conclusion411

(σ1, . . . , σk;S′) of Rule 7 is minimized.412

Proof Let ϕ be the conclusion (σ1, . . . , σk;S′) of Rule 7. As-413

sume that (s1, . . . , sk) ∈ S′. To prove that ϕ is minimized,414

we must show that there is a model M of ϕ such that for415

1 ≤ i ≤ k, the value of σi in M is si. From the assignment of416

values to the atomic propositions, as specified by a portion of417

(s1, . . . , sk), we obtain our model M . For this model M , the418

value of each σi is exactly that specified by (s1, . . . , sk), as we419

can see by a simple induction on the structure of formulas.420

Hence, ϕ is minimized. �421

The assumption of closure under subformulas in Lemma 3.1422

is needed, as the following example shows. Let γ be the MD-423

sentence (σ1 & σ2, σ1 Y σ2; {(0.5, 0.2)}) in Gödel logic. The424

result of applying Rule 7 to γ is γ itself because neither of its425

components include the other as a subformula. But γ is not426

minimized, since it is not satisfiable, because the min of two427

numbers cannot be greater than the max.428

Lemma 3.2 For each of Rules 2, 3, and 7, the premise is429

logically equivalent to the conclusion. For Rule 4, the set of430

the premises is logically equivalent to the conclusion.431

Proof The equivalence of the premise and conclusion of Rule 2432

is clear. For Rules 3 and 7, the fact that the premise logically433

implies the conclusion follows from soundness of the rules, as434

does the fact that the set of the premises of Rule 4 logically435

implies the conclusion, and we shall show soundness shortly.436

We now show that for Rules 3 and 7, the conclusion logically437

implies the premise. For Rule 3, we see that if (s1, . . . , sm) ∈438

S × [0, 1]m−k, then (s1, . . . , sk) ∈ S. Hence, the conclusion439

of Rule 3 logically implies the premise of Rule 3. For Rule 7,440

the conclusion logically implies the premise because of the441

soundness of Rule 6. For Rule 4, the conclusion logically442

implies the each of the premises, and hence the set of the443

premises, because of the soundness of Rule 6. �444

Lemma 3.3 Minimization is preserved by Rules 2 and 4, in445

the following sense.446

1. If the premise of Rule 2 is minimized, then so is the447

conclusion.448

2. If the premises (σ1, . . . , σk;S1) and (σ1, . . . , σk;S2) of449

Rule 4 are minimized, then so is the conclusion450

(σ1, . . . , σk;S1 ∩ S2).451

Proof Part (1) is immediate, since the premise and conclusion452

have exactly the same information.453

For part (2), assume that (σ1, . . . , σk;S1) and454

(σ1, . . . , σk;S2) are minimized. To show that455

(σ1, . . . , σk;S1 ∩ S2) is minimized, we must show that456

if (s1, . . . , sk) ∈ S1 ∩ S2, then there is a model M of457

(σ1, . . . , σk;S1 ∩ S2) such that for 1 ≤ i ≤ k, the value of458

σi in M is si. Assume that (s1, . . . , sk) ∈ S1 ∩ S2. Hence,459

(s1, . . . , sk) ∈ S1. Since (σ1, . . . , σk;S1) is minimized, we 460

obtain the desired model M . � 461

Theorem 3.4 Our axiom system is sound and complete for 462

MD-sentences. 463

Proof We begin by proving soundness. We say that an axiom 464

is sound if it is true in every model. We say that an inference 465

rule is sound if every model that satisfies the premise also 466

satisfies the conclusion. To prove soundness of our axiom 467

system, it is sufficient to show that our axiom is sound and 468

that each of our rules is sound. 469

Axiom 1 is sound, since every real-valued logic formula has 470

a value in [0, 1]. 471

Rule 2 is sound, since the premise and conclusion encode 472

exactly the same information. 473

Rule 3 is sound for the following reason. Let M be a model, 474

and let s1, . . . , sm be the values of σ1, . . . , σm, respectively, in 475

M . If M satisfies the premise, then (s1, . . . , sk) ∈ S. This 476

implies that (s1, . . . , sm) ∈ S × [0, 1]m−k) and so M satisfies 477

the conclusion. 478

Rule 4 is sound for the following reason. Let M be a model, 479

and let s1, . . . , sk be the values of σ1, . . . , σk, respectively, in 480

M . If M satisfies the premise, then (s1, . . . , sk) ∈ S1 and 481

(s1, . . . , sk) ∈ S2. Therefore, (s1, . . . , sk) ∈ S1 ∩ S2, and so M 482

satisfies the conclusion. 483

Rule 5 is sound for the following reason. Let M be a model, 484

and let s1, . . . , sk be the values of σ1, . . . , σk, respectively, in 485

M . IfM satisfies the premise, then (s1, . . . , sk) ∈ S. Therefore 486

(s1, . . . , sk−r) ∈ S′, and so M satisfies the conclusion. 487

Rule 6 is sound for the following reason. Let M be a model, 488

and let s1, . . . , sk be the values of σ1, . . . , σk, respectively, inM . 489

If M satisfies the premise, then (s1, . . . , sk) ∈ S. Therefore, 490

(s1, . . . , sk) ∈ S′, and so M satisfies the conclusion. 491

Rule 7 is sound for the following reason. Let M be a model, 492

and let s1, . . . , sk be the values of σ1, . . . , σk, respectively, in 493

M . If M satisfies the premise, then (s1, . . . , sk) ∈ S. In our 494

real-valued logic, we have that (a) fα(si, sj) = sm when σm 495

is σi ασj and α is a binary connective (such as &), and (b) 496

f¬(si) = sj when σj is ¬σi. So the tuple (s1, . . . , sk) is good, 497

and hence in S′, so M satisfies the conclusion. 498

This completes the proof of soundness. We now prove 499

completeness. Assume that Γ is finite, and Γ � γ; we must 500

show that Γ ` γ. We can assume without loss of generality 501

that Γ is nonempty, because if Γ is empty, we replace it by a 502

singleton set containing an instance of our Axiom 1. 503

Let Γ = {γ1, . . . , γn}. For 1 ≤ i ≤ n, assume that γi is 504

(σi1, . . . , σiki
;Si), and let Γi = {σi1, . . . , σiki

}. Assume that γ 505

is (σ0
1 , . . . , σ

0
k0 ;S0), and let Γ0 = {σ0

1 , . . . , σ
0
k0}. Let G be the 506

closure of Γ0 ∪ Γ1 ∪ · · · ∪ Γn under subformulas. 507

For each i with 1 ≤ i ≤ n, let Hi be the set difference G\Γi. 508

Let ri = |Hi|. Let Hi = {τ i1, . . . τ iri
}. By applying Rule 3, 509

we prove from γi the sentence (σi1, . . . , σiki
, τ i1, . . . , τ

i
ri

;Si × 510

[0, 1]ri ). Let ψi be the conclusion of Rule 7 when the premise 511

is (σi1, . . . , σiki
, τ i1, . . . , τ

i
ri

;Si × [0, 1]ri ). 512

Let δ1, . . . , δp be a fixed ordering of the members of G. 513

Since the set of components of each ψi is G, we can use Rule 2 514

to rewrite ψi as a sentence (δ1, . . . , δp;Ti). Let us call this 515

sentence ϕi. 516

Also, since the only rules used in proving ϕi from γi are 517

Rules 2, 3, and 7, it follows from Lemma 3.2 that γi and ϕi 518

are logically equivalent. 519
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We now make use of the notion of minimization. Let520

T = T1 ∩ · · · ∩ Tn. Define ϕ to be the sentence (δ1, . . . , δp;T ).521

It follows from Lemma 3.1 that each ψi is minimized. So by522

Lemma 3.3, each ϕi is minimized. By Lemma 3.3 again, ϕ is523

minimized.524

The sentence ϕ was obtained from the sentences ϕi by525

applying Rule 4 n− 1 times. It follows from Lemma 3.2 that526

ϕ is equivalent to {ϕ1, . . . , ϕn}. Since we also showed that γi527

is logically equivalent to ϕi for 1 ≤ i ≤ n, it follows that ϕ is528

logically equivalent to Γ. Hence, since Γ � γ, it follows that529

{ϕ} � γ. It also follows that to prove that Γ ` γ, we need only530

show that there is a proof of γ from ϕ.531

Recall that γ is (σ0
1 , . . . , σ

0
k0 ;S0), and ϕ is (δ1, . . . , δp;T ).532

By applying Rule 2, we can re-order the components of ϕ so533

that the components start with σ0
1 , . . . , σ

0
k0 . We thereby obtain534

from ϕ a sentence (σ0
1 , . . . , σ

0
k0 , . . . ;T

′), which we denote by535

ϕ′. By Lemma 3.2 we know that ϕ and ϕ′ are logically536

equivalent. So {ϕ′} � γ. Since ϕ is minimized, so is ϕ′, by537

Lemma 3.3. By applying Rule 5, we obtain from ϕ′ a sentence538

(σ0
1 , . . . , σ

0
k0 ;T ′′), which we denote by ϕ′′.539

We now show that T ′′ ⊆ S0. This is sufficient to complete540

the proof of completeness, since then we can use Rule 6 to prove541

γ. If T ′′ is empty, we are done. So assume that (s1, . . . , sk0 ) ∈542

T ′′; we must show that (s1, . . . , sk0 ) ∈ S0.543

Since (s1, . . . , sk0 ) ∈ T ′′, it follows that there is an extension544

(s1, . . . , sk0 , . . . , sp) in T ′. Since ϕ′ is minimized, there is a545

model M of ϕ′ such that the value of σ0
i is si, for 1 ≤ i ≤ k0.546

Since {ϕ′} � γ, it follows thatM is a model of γ. By definition547

of what it means for M to be a model of γ, it follows that548

(s1, . . . , sk0 ) ∈ S0, as desired.549

This completes the soundness and completeness proofs. �550

4. Boolean combinations of MD-sentences551

Our main theorem in this section implies that MD-sentences552

are robust, in that each finite Boolean combination of MD-553

sentences is eqvuivealnt to a single MD-sentence. Of course,554

since we are dealing with sentences (which take only the values555

True and False) in our “outer” logic, we use the standard556

Boolean connectives. Shortly, we shall make these notions557

precise.558

In this section, there will be two disjoint sets of atomic559

propositions. The first are the atomic propositions appearing560

inside MD-sentences; we call these MD-atomic propositions.561

For example, in the MD-sentence (A & B,A Y B; [0.3, 0.7] ×562

[0.5, 1]), the MD-atomic propositions are A and B. The second563

are those atomic propositions appearing inside propositional564

formulas; we call these prop-atomic propositions. For example,565

in the propositional formula X ∨ (¬X ∧ Y ), the prop-atomic566

propositions are X and Y .567

We now define extended MD-sentences. Let γ be a proposi-568

tional formula (built using ∧, ∨, and ¬), and let f be a function569

mapping each prop-atomic proposition appearing in γ to an570

MD-sentence. Then the result of replacing each prop-atomic571

proposition X in γ by f(X) is an extended MD-sentence. For572

example, let γ be the propositional formula X ∨ (¬X ∧ Y ), let573

f(X) = (σ1;S), and let f(Y ) = (σ′1, σ′2;S′). We then get the574

extended MD-sentence (σ1;S) ∨ (¬(σ1;S) ∧ (σ′1, σ′2;S′)).575

This defines the syntax of extended MD-sentences. We576

now define their semantics. As before, a model M is an577

assignment gM of truth values to the MD-atomic propositions.578

Let γ be a propositional formula (built using ∧, ∨, and ¬),579

and let f be a function mapping each prop-atomic proposition 580

appearing in γ to an MD-sentence. Let the result of replacing 581

each prop-atomic proposition X in γ by f(X) be the extended 582

MD-sentence γ′. We now say what it means for the model M 583

to model, or satisfy, γ′. For each prop-atomic proposition X 584

appearing in γ, let f ′(X) = True if M � f(X), and otherwise 585

let f ′(X) = False. Now let γ′′ be the result of replacing 586

every prop-atomic proposition X in γ by f ′(X). The result 587

is logically equivalent to either True or False. If this result is 588

logically equivalent to True, then we say that M models γ′, 589

writtenM � γ′. Let us consider our example above, where γ is 590

the propositional formula X ∨ (¬X ∧ Y ), and f(X) = (σ1;S), 591

and f(Y ) = (σ′1, σ′2;S′). This gives the extended MD-sentence 592

γ′, which is (σ1;S) ∨ (¬(σ1;S) ∧ (σ′1, σ′2;S′)). If M 6� (σ1;S) 593

but M � (σ′1, σ′2;S′), then γ′′ is False∨ (¬False∧True), which 594

is logically equivalent to True. So M � γ′. 595

Theorem 4.1 Every extended MD-sentence is logically equiv- 596

alent to a single MD-sentence. 597

Proof Let γ be a propositional formula built using ∧, ∨, and 598

¬. Assume that the extended MD-sentence γ′ is obtained 599

from γ by replacing each prop-atomic proposition in γ with 600

an MD-sentence. 601

We prove the theorem by induction on the structure of 602

γ′, working from the inside out. Thus, we show (a) if τ1 603

and τ2 are MD-sentences, then the extended MD-sentence 604

τ1 ∨ τ2 is logically equivalent to an MD-sentence; (b) if τ1 605

and τ2 are MD-sentences, then the extended MD-sentence 606

τ1 ∧ τ2 is logically equivalent to an MD-sentence; and (c) if 607

τ1 is an MD-sentence, then the extended MD-sentence ¬τ1 608

is logically equivalent to an MD-sentence. Let τ1 and τ2 be 609

MD-sentences. Assume that τ1 is (σ1
1 , . . . , σ

1
m;S1), and that 610

τ2 is (σ2
1 , . . . , σ

2
n;S2). As in the proof of Theorem 3.4, let G 611

be the closure of {σ1
1 , . . . , σ

1
m, σ

2
1 , . . . , σ

2
n} under subformulas. 612

Assume that G = {δ1, . . . , δp}. As in the proof of Theorem 3.4, 613

we know that for i = 1 and i = 2, there is Ti such that τi is 614

equivalent to a sentence (δ1, . . . , δp;Ti). We now show that 615

the disjunction τ1∨τ2 is equivalent to (δ1, . . . , δp;T1∪T2). Let 616

M be a model, and assume that the value of δi in M is si, 617

for 1 ≤ I ≤ p. If M satisfies τ1 ∨ τ2, then (s1, . . . , sp) ∈ T1 or 618

(s1, . . . , sp) ∈ T2. Hence, (s1, . . . , sp) ∈ T1 ∪ T2, so M satisfies 619

(δ1, . . . , δp;T1 ∪T2). Conversely, if M satisfies (δ1, . . . , δp;T1 ∪ 620

T2), then (s1, . . . , sp) ∈ T1∪T2, and hence either (s1, . . . , sp) ∈ 621

T1, in which case M satisfies τ1, or (s1, . . . , sp) ∈ T2, in which 622

case M satisfies τ2. Therefore, M satisfies τ1 ∨ τ2,as desired. 623

A similar argument shows that the conjunction τ1 ∧ τ2 is 624

equivalent to (δ1, . . . , δp;T1 ∩ T2), and the negation ¬γ1 is 625

equivalent to (δ1, . . . , δp; T̃i), where T̃1 is the set difference 626

[0, 1]p \ T1. � 627

A good way to view Theorem 4.1 is as follows: 628

Theorem 4.2 Each finite Boolean combination of MD- 629

sentences is equivalent to a single MD-sentence. 630

Proof This is really just a restating of Theorem 4.1. � 631

5. Reducing the dimensionality 632

In this section, we give both a negative and a positive result 633

about reducing the dimensionality of MD-sentences. We then 634

give an open problem. 635
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Theorem 5.1 There is a 2-dimensional MD-sentence that636

is not equivalent (in either Łukasiewicz or Gödel logic) to a637

1-dimensional MD-sentence.638

Proof Let σ be the 2-dimensional MD-sentence (A1, A2;S)639

where S = {(a1, a2) : a2
1 = a2}. We now show that σ is not640

equivalent to a 1-dimensional MD-sentence. If ϕ is a formula641

in our set F of logical formulas, and ϕ involves only A1 and A2,642

then it is easy to see (by induction on the structure of formulas)643

that for Łukasiewicz or Gödel logic, ϕ defines a piecewise linear644

function gϕ, in the sense that the 1-dimensional MD-sentence645

(ϕ;S′) says that if a1 is the value of A1 and a2 is the value646

of A2, then gϕ(a1, a2) ∈ S′. Since there is no such piecewise647

linear function gϕ and set S′ for our sentence σ, the result648

holds. �649

The next theorem does not depend on restricting to650

Łukasiewicz or Gödel logic.651

Theorem 5.2 Every finite set of MD-sentences of arbi-652

trary dimensions that involve only the k atomic propositions653

A1, . . . , Ak is equivalent to a single k-dimensional MD sen-654

tence (A1, . . . , Ak;S). (The set S depends on the real-valued655

logic being considered.)656

Proof Let Γ be a finite set of MD-sentences. We can view657

Γ as a conjunction of MD-sentences, so by Theorem 4.1, Γ658

is equivalent to a single MD-sentence γ. As in the proof659

of completeness, by closing under subformulas, applying660

Rule 7, and reordering by applying Rules 2, we obtain an661

MD-sentence (A1, . . . , Ak, ϕ1, . . . , ϕ
′
r;S′) that is equivalent to662

γ. Since the tuples in S′ are good tuples, this is equiva-663

lent to the sentence (A1, . . . , Ak;S) where S = {(s1, . . . , sk) :664

(s1, . . . sk, s
′
1, . . . s

′
r) ∈ S′}. �665

Open problem: For each k with k ≥ 2, does there exist a666

(k+ 1)-dimensional MD-sentence that in Łukasiewicz or Gödel667

logic is not equivalent to a k-dimensional MD-sentence?668

6. SoCRAtic: A decision procedure669

Given a finite set Γ of MD-sentences, and a single MD-sentence670

γ, Theorem 3.4 says that Γ � γ if and only if Γ ` γ. As we671

shall show, under natural assumptions there is an algorithm for672

deciding if Γ � γ. We call this algorithm a decision procedure.673

If the information sets S all have s simple structure and the674

size of Γ is treated as a constant, than the algorithm runs in675

polynomial time.676

It is natural to wonder whether we can simply use our677

complete axiomatization to derive a decision procedure. The678

usual answer is that it is not clear in what order to apply the679

rules of inference. In our proof of completeness, the rules of680

inference are applied in a specific order, so that is not an issue681

here. Rather, the problem is that in applying Rule 7, there682

is no easy way to derive S′ from S, even if S is fairly simple.683

In fact, we now show that even deciding if S′ is nonempty is684

NP-hard. Let ϕ be an instance of the NP-hard problem 3SAT.685

Thus, ϕ is of the form (B1
1YB

1
2YB

1
3)&· · ·&(Br1YBr2YBr3), where686

each Bij is a literal (an atomic proposition or its negation).687

Assume that the atomic propositions that appear in ϕ are688

A1, . . . , Ak. Let ψ be the sentence689

(A1, . . . , Ak,¬A1, . . . ,¬Ak, τ1, . . . , τr, τ1 YB
1
3 , . . . , τr YB

r
3 ;S),690

where τi is Bi1 YBi2, for 1 ≤ i ≤ r, and where S = {0, 1}2k+r× 691

{1}r. Assume that we apply Rule 7 where the premise is ψ, 692

and the conclusion is 693

(A1, . . . , Ak,¬A1, . . . ,¬Ak, τ1, . . . , τr, τ1YB
1
3 , . . . , τr YB

r
3 ;S′). 694

We call this sentence ψ′. It follows easily from our construction 695

of ψ that the 3SAT problem ϕ is satisfiable if and only if 696

ψ is satisfiable. Now ψ and ψ′ are logically equivalent, by 697

Lemma 3.2. So the 3SAT problem ϕ is satisfiable if and 698

only if ψ′ is satisfiable. By Lemma 3.1, we know that ψ′ is 699

minimized. Hence, if S′ is nonempty, there is a model of ψ′, 700

by the definition of minimization. And if S′ is empty, then by 701

the definition of a model of a sentence, there is no model of 702

ψ′. Therefore, ψ′ is satisfiable if and only if S′ is nonempty. 703

By combining this with our earlier observation that the 3SAT 704

problem ϕ is satisfiable if and only if ψ′ is satisfiable, it follows 705

that the 3SAT problem ϕ is satisfiable if and only if S′ is 706

nonempty. Hence, deciding if S′ is nonempty is NP-hard. 707

We now discuss our decision procedure, which bears resem- 708

blance to Reiner Hähnle’s decision procedure for the tableaux 709

method with infinite-valued Łukasiewicz logic (23) but extends 710

support to discontinuous operators. Our decision procedure 711

makes use of linear programming and is thus particularly 712

suited for Łukasiewicz and Gödel logic’s piecewise linear con- 713

nective functions; we focus primarily on these two logics in the 714

following, however it is also possible for our decision procedure 715

to work on product logic using the same logarithmic trans- 716

form as in (24). To have a chance of there being a decision 717

procedure, the set portion S of an MD-sentence (σ1, . . . , σk;S) 718

must be tractable. We now give a simple, natural choice for 719

the set portions. A rational interval is a subset of [0, 1] that 720

is of one of the four forms (a, b), [a, b], (a, b], or [a, b), where 721

a and b are rational numbers. Let us say that a sentence 722

(σ1, . . . , σk;S) is interval-based if S is of the form S1×· · ·×Sk, 723

where each Si is a union of a finite number of rational inter- 724

vals. If each Si is the union of at most N rational intervals, 725

then we say that the sentence is N-interval-based. Note that 726

this interval-based sentence (σ1, . . . , σk;S) is equivalent to the 727

set {(σ1;S1), . . . , (σk;Sk)} of 1-dimensional sentences. This 728

observation is useful in implementing the decision procedure. 729

Let Γ = {γ1, . . . , γn}. For 1 ≤ i ≤ n, assume that γi is 730

(σi1, . . . , σiki
;Si), and let Γi = {σi1, . . . , σiki

}. Assume that γ 731

is (σ0
1 , . . . , σ

0
k0 ;S0), and let Γ0 = {σ0

1 , . . . , σ
0
k0}. Let G be the 732

closure of Γ0 ∪ Γ1 ∪ · · · ∪ Γn under subformulas. If |G| ≤M , 733

then we say that the pair (Γ, γ) has nesting depth at most M . 734

Theorem 6.1 Assume either Łukasiewicz logic or Gödel logic, 735

with the connectives &, Y, →, and ¬. Assume that Γ ∪ {γ} 736

is interval based. Then there is an algorithm that determines 737

whether Γ � γ. Assume that Γ has at most P sentences, each 738

sentence in Γ∪{γ} is N-interval based, and (Γ, γ) has nesting 739

depth at most M . If M is fixed, then the algorithm runs in 740

time polynomial in P and N . 741

Proof Assume throughout the proof that Γ has at most P 742

sentences, each sentence in Γ ∪ {γ} is N -interval based, and 743

(Γ, γ) has nesting depth at most M . 744

It is easy to see that Γ � γ if and only Γ ∪ {¬γ} is not 745

satisfiable. So we need only give an algorithm that decides 746

whether Γ ∪ {¬γ} is satisfiable. 747

Let {σ1, . . . , σp} be the closure of Γ∪{γ} under subformulas. 748

Let Γ = {γ1, . . . , γn}. By making use of Rules 2 and 3, for 749
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each i with 1 ≤ i ≤ n, we can create a sentence γ′i of the form750

(σ1, . . . , σp;Si) that by Lemma 3.2 is equivalent to γi, and751

that has σ1, . . . , σp as components. By the construction, each752

γ′i is N -interval-based.753

Similarly, create the sentence γ′ of the form (σ1, . . . , σp;T )754

that is equivalent to γ, and that has σ1, . . . , σp as components.755

As before, γ′ is N -interval-based.756

Now Γ is equivalent to the conjunction of the sentences γ′i for757

1 ≤ i ≤ n, and this conjunction is equivalent to (σ1, . . . , σp;S),758

where S =
⋂
i≤n S

i. We now show that (σ1, . . . , σp;S) is PN -759

interval-based. By assumption, for each i with 1 ≤ i ≤ n, we760

have that Si is of the form Si1 × · · · × Sip, where each Sij is761

the union of at most N intervals. For each j with 1 ≤ j ≤ p,762

let Sj =
⋂
i
Sij . Then S = S1 × · · · × Sp. So to show that763

(σ1, . . . , σp;S) is PN -interval-based, we need only show that764

each Sj is the union of at most PN intervals.765

Since Sj =
⋂
i≤n S

i
j , where each Sij is the union of at most766

N intervals, we see that Sj is the union of intervals where the767

left endpoint of each interval in Sj is one of the left endpoints768

of intervals in
⋃
i≤n S

i
j . For each j, there are n sets Sij . And769

for each i with 1 ≤ i ≤ n, there are at most N left endpoints770

of Sij . So the total number of left endpoints of intervals in771 ⋃
i≤n S

i
j is at most nN ≤ PN , and so the number of intervals772

in Sj is at most PN . Since S = S1 × · · · × Sp, it follows that773

(σ1, . . . , σp;S) is PN -interval-based.774

Let us now consider ¬γ, which is equivalent to ¬γ′. Recall775

that γ′ is (σ1, . . . , σp;T ), and that γ′ is N -interval-based. So776

T is of the form T1 × · × Tp, where each Tj is the union of at777

most N intervals. As discussed earlier, the negation of γ′ is778

(σ1, . . . , σp; T̃ ), where T̃ is the set difference [0, 1]p\T . For each779

j with 1 ≤ j ≤ p, let T ′j be the set difference [0, 1]\Tj . Clearly,780

T ′j is the union of intervals. The left endpoints of intervals in781

T ′j are the right-end points of intervals in Tj , possible along782

with 0. So T ′j is the union of at most N + 1 intervals. Let783

Vj = [0, 1]j−1 × T ′j × [0, 1]p−j . It is straightforward to see that784

T̃ =
⋃
j≤p Vj .785

Now, showing that Γ∪{¬γ} is not satisfiable is equivalent to786

showing that (σ1, . . . , σp;S)∧ (σ1, . . . , σp; T̃ ) is not satisfiable,787

which is equivalent to showing that for every j with 1 ≤788

j ≤ p, we have that (σ1, . . . , σp;S) ∧ (σ1, . . . , σp;Vj) is not789

satisfiable. So we need only give an algorithm for deciding790

if (σ1, . . . , σp;S) ∧ (σ1, . . . , σp;Vj) is satisfiable. Let us hold791

j fixed. Since, as we showed, (σ1, . . . , σp;S) is PN -interval-792

based, we can write S as S1×· · ·×Sp, where each Si is the union793

of at most PN intervals. Now (σ1, . . . , σp;S)∧ (σ1, . . . , σp;Vj)794

is equivalent to (σ1, . . . , σp;S ∩ Vj). Now S ∩ Vj is of the795

form S′1 × · · · × S′p, where S′m = Sm for m 6= j, and where796

S′j = Sj ∩T ′j . We showed that T ′j is the union of at most N +1797

intervals, and that Sj is the union of at most PN intervals,798

so it follows that Sj ∩ T ′j is the union of at most PN +N + 1799

intervals, since each left endpoint of the intervals in Sj ∩ T ′j is800

a left endpoint of an interval in Sj or an interval in T ′j .801

We now describe our algorithm for deciding if the sentence802

(σ1, . . . , σp;S ∩ Vj), that is, for the sentence (σ1, . . . , σp;S′1 ×803

· · · × S′p), which is (PN +N + 1)-interval-based, is satisfiable.804

This can be broken into subproblems, one for each choice805

(I1, . . . , Ip) of a single interval Ik from S′k for each k with806

1 ≤ k ≤ p. This gives a total of at most (PN + N + 1)M807

subproblems. For each of these subproblems, we wish to decide808

satisfiability of the system {s1 ∈ I1, . . . , sp ∈ Ip} along with809

(a) the binary constraints fα(si, sj) = sm when σm is σi ασj810

and α is a &, Y, or →, and (b) f¬(si) = sj when σj is ¬σi. 811

The constraints sj ∈ Ij are specified by inequalities (for 812

example, if Ij is (a, b] we get the inequalities a < si ≤ b). 813

We now show how to deal with the constraints in (a) and 814

(b) above. A canonical example is given by dealing with 815

f&(si, sj) = sm in Gödel logic, which interprets “f&(si, sj) = 816

sm” as min{si, sj} = sm. We split the system of con- 817

straints into two systems of constraints, one where we re- 818

place min{si, sj} = sm by the two statements “si ≤ sj , 819

si = sm” and another where we replace min{si, sj} = sm 820

by the two statements “sj < si, sj = sm”. In Łukasiewicz 821

logic, where f&(si, sj) is max{0, s1 + s2 − 1}, we split the 822

system of constraints into two systems of constraints, one 823

where we replace max{0, s1 + s2 − 1} = sm by the two state- 824

ments “si + sj − 1 ≥ 0, si + sj − 1 = sm” and another where 825

we replace max{0, s1 + s2 − 1} = sm by the two statements 826

“si + sj − 1 < 0, sm = 0”. The same approach works for 827

the other binary connectives. For example, in Gödel logic, 828

where f→(si, sj) is 1 if si ≤ sj and is sj otherwise, we would 829

split into two cases, one where we replace f→(si, sj) = sm 830

by the two statements “si ≤ sj , sm = 1” and another where 831

we replace f→(si, sj) = sm by the two statements “sj > si, 832

sm = sj”. In considering the effect of the constraints in (a) 833

and (b), each of our at most (PN + N + 1)M subproblems 834

splits at most 2p ≤ 2M times, giving a grand total of at most 835

(PN + N + 1)M2M systems of inequalities that we need to 836

check for feasibility (that is, to see if there is a solution). 837

For each of these systems of inequalities, we can make use a 838

polynomial-time algorithm for linear programming to decide 839

feasibility, where the size of each of these systems is linear in 840

M , and so the running time for each instance of the linear 841

programming algorithm is polynomial in M . Since also the 842

number of systems is at most (PN +N + 1)M2M , and sinceM 843

is fixed by assumption, this gives us an overall algorithm for 844

decidability, whose running time is polynoimial in N and P . 845

� 846

The reason we held the parameter M fixed is that the run- 847

ning time of the algorithm is exponential in M , because there 848

are an exponential number of calls to a linear programming 849

subroutine. The algorithm is polynomial-time if there is a 850

fixed bound on M . Such a bound is necessary, because the 851

problem can be co-NP hard, for the following reason. 852

Let γ be the sentence (A,¬A; [1] × [1]). Then γ is not 853

satisfiable. Let Γ consist of the single sentence ψ from the 854

beginning of the section. Then Γ � γ if and only if ψ is not 855

satisfiable. Now ψ is satisfiable if and only if S′ from the 856

beginning of the section is nonempty, which we showed is an 857

NP-hard problem to determine. Since Γ � γ if and only if ψ is 858

not satisfiable, it follows that deciding if Γ � γ is co-NP hard. 859

We now give an implementation of the decision proce- 860

dure. The decision procedure described in the proof of Theo- 861

rem 6.1 is available from the socratic-logic GitHub reposi- 862

tory hosted at https://github.com/IBM/socratic-logic. We imple- 863

mented the algorithm as a Python package named socratic, 864

which requires Python 3.6 or newer and makes use of IBM®
865

ILOG® CPLEX® Optimization Studio V12.10.0 or newer via 866

the docplex Python package. It would also be possible to 867

implement this same decision procedure using satisfiability 868

modulo theories (SMT) and solvers such as Z3. 869
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A. Implementation details. The implementation closely ad-870

heres to the decision procedure described in the proof of871

Theorem 6.1, though with a few notable design shortcuts.872

Boolean variables. One such shortcut is the use of mixed in-873

teger linear programming (MILP) to perform the “spliting”874

of linear programs into two possible optimization problems,875

specifically by adding a Boolean variable that determines which876

of a set of constraints must be active. MILP’s exploration877

of either value for the Boolean variable is then equivalent to878

repeating linear optimization for either possible set of con-879

straints; no feasible solution exists for any combination of880

Boolean variables in exactly the case that none of the split881

linear programs are feasible. In practice, CPLEX has built-in882

support for min, max, abs, and a handful of other functions,883

though Boolean variables are also useful for implementing884

Gödel logic’s implication, negation, and equivalence opera-885

tions as well as selecting the specific intervals a sentence’s886

formula truth values lie within.887

Strict inequality. The described decision procedure also occa-888

sionally calls for continuous constraints with strict inequality,889

in particular when dealing with the complements of closed890

intervals, but also when handling input open intervals or the891

Gödel implication, (x→ y) = y if x > y else 1. To implement892

a strict inequality constraint such as x > y, we introduce a893

global gap variable δ ∈ [0, 1] to widen the distance between894

either side of the inequality, e.g., x ≥ y+δ, and then maximize895

δ. If optimization yields an apparently feasible solution but896

with δ = 0, we regard it as infeasible because at least one897

strict inequality constraint could not be honored strictly.898

1-dimensional sentences. We additionally observe that, for899

theories restricted to interval-based sentences, it is sufficient900

to support only sentences containing a single formula and901

collection of truth value intervals, i.e., 1-dimensional sentences902

of the form (σ;S) for a single formula σ. This is because of903

the following theorem:904

Theorem 6.2 Interval-based sentence s = (σ1, . . . , σk;S1 ×905

· · · × Sk) is equivalent to a collection of 1-dimensional sen-906

tences s1, . . . , sk, where si = (σi;Si).907

Proof Given interval-based sentence s and 1-dimensional sen-908

tences s1, . . . , sk as described, apply Rules 3 and 2 to obtain909

s′1, . . . , s
′
k given s′i = (σ1, . . . , σk; [0, 1]i−1×Si× [0, 1]k−i). One910

may then repeatedly apply Rule 4 to compose these exactly911

into s. Likewise, one may apply Rules 2 and 5 to obtain each912

si directly from s. Hence, the two forms are equivalent. �913

B. Experimental results. We tested socratic in four different914

experimental contexts:915

• 3SAT and higher k-SAT problems which become satisfi-916

able if any one of their input clauses is removed917

• 82 axioms and tautologies taken from Hájek in (13), some918

of which hold only for one of Łukasiewicz or Gödel logic919

• A formula given in Formula 2 that is classically valid920

but invalid in both Łukasiewicz and Gödel logic unless921

propositions are constrained to be Boolean922

• A stress test on sentences with thousands of intervals923

Experiments are conducted on a MacBook Pro with macOS 924

Catalina 10.15.5, 2.9 GHz Quad-Core Intel Core i7, 16 GB 925

2133 MHz LPDDR3, and Intel HD Graphics 630 1536 MB. 926

k-SAT. We construct classically unsatisfiable k-SAT problems 927

of the form 928

(x1 ∧ ¬x1) ∨ · · · ∨ (xk ∧ ¬xk) [1] 929

which, after CNF conversion, and replacing ∨ by Y, yields for
3SAT

(x1 Y x2 Y x3), (¬x1 Y x2 Y x3), (x1 Y ¬x2 Y x3),
(x1 Y x2 Y ¬x3), (x1 Y ¬x2 Y ¬x3), (¬x1 Y x2 Y ¬x3),
(¬x1 Y ¬x2 Y x3), (¬x1 Y ¬x2 Y ¬x3)

and similarly for larger k. The removal of any one clause 930

in such a problem renders it (classically) satisfiable. This 931

is similar to the problem classes described in (25) and (26), 932

however we maintain problem difficulty in Łukasiewicz logic 933

by restricting truth-value intervals, as further described below. 934

We observe that, when each clause is required to have truth 935

value exactly 1 but propositions are allowed to have any truth 936

value, socratic correctly determines the problem to be 937

1) unsatisfiable in Gödel logic, 938

2) satisfiable in Gödel logic when dropping any one clause, 939

3) trivially satisfiable in Łukasiewicz logic with, e.g., xi = .5, 940

4) again unsatisfiable in Łukasiewicz logic when propositions 941

are required to have truth values in range either
[
0, 1

k

)
942

or
(
k−1
k
, 1
]
, 943

5) and yet again satisfiable in Łukasiewicz logic with con- 944

strained propositions when dropping any one clause. 945

Results are shown in Table 1. We observe that Gödel logic 946

is much slower than Łukasiewicz logic as implemented in 947

socratic, likely because it performs mins and maxes between 948

many arguments throughout while Łukasiewicz logic instead 949

performs sums with simpler mins and maxes serving as clamps 950

to the [0, 1] range. Interestingly, the difference between un- 951

satisfiable and satisfiable in Gödel logic is significant; while 952

the satisfiable problems have one fewer clause, this is more 953

likely explained by socratic finding a feasible solution quickly. 954

On the other hand, the unsatisfiable and satisfiable problems 955

(with constrained propositions) take roughly the same amount 956

of time for Łukasiewicz logic, though the trivially satisfiable 957

problem is quicker. The exponential increase in runtime with 958

respect to k is mostly explained by the fact that each larger 959

problem has twice as many clauses, but runtime appears to 960

be growing by slightly more than a factor of 2 per each k. 961

Hájek tautologies. Hájek lists many axioms and tautologies 962

pertaining to a system of logic he describes as basic logic 963

(BL), consistent with a broad class of fuzzy logics, as well as 964

a number of tautologies specific to Łukasiewicz and Gödel 965

logic, all of which should have truth value exactly 1. We 966

implement these tautologies in socratic and test whether 967

the empty theory can entail each (σ; {1}) in its respective 968

logic where σ is one of the tautologies. The BL tautologies 969

are divided into batches pertaining to specific operations and 970

properties, specifically axioms, implication, conjunction, min, 971

max, negation, associativity, equivalence, distributivity, and 972
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Table 1. k-SAT runtimes in seconds for socratic with different con-
figurations. The columns pertain to items 1 through 5 above.

Gödel Gödel Łuka. Łuka. Łuka.
k unsat. satisf. trivial unsat. satisf.

3 .012 .011 .014 .019 .014
4 .022 .020 .022 .031 .033
5 .054 .043 .041 .047 .043
6 .121 .107 .064 .104 .098
7 .204 .255 .173 .167 .206
8 .404 .414 .273 .286 .308
9 .861 .881 .507 .539 .554

10 5.46 1.99 1.03 1.11 1.17
11 18.0 4.34 2.09 2.44 2.21
12 33.3 10.9 4.36 5.06 5.01
13 119 25.8 8.72 12.4 12.3
14 696 71.0 18.4 38.0 35.6

the unary Baaz-Monteiro operator 4 defined by f4(s) =973

1 if s = 1 else 0. In addition, there are logic-specific batches974

of tautologies for Łukasiewicz and Gödel logic. Each of the975

above BL batches complete successfully for both logics and976

each of the logic-specific batches complete for their respective977

logics and, as expected, fail for the other logic. The runtime978

of individual tests are negligible; the entire test suite of 82979

tautologies run on both logics completes in just 2.911 seconds.980

Boolean logic. We consider a formula σ defined981

(ϕ→ ψ)→ ((¬ϕ→ ψ)→ ψ) [2]982

which is valid in classical logic but is not valid in either983

Łukasiewicz or Gödel logic. Conversely, constraining propo-984

sitions ϕ and ψ to have 0–1 truth values via the sentences985

(ϕ; {0, 1}) and (ψ; {0, 1}) into the theory succeeds in entailing986

σ in either logic.987

Stress test. We consider the experimental configuration988

given by Formula 2 for a query (σ;S) with S = [.5, 1] ∪989 ⋃{
( 1
k+1 ,

1
k

) : 2 ≤ k ≤ 10, 000
}

and for (ϕ;S′) and (ψ;S′)990

with S′ = 0 ∪
⋃{

(1− 1
k
, 1− 1

k+1 ) : 2 ≤ k ≤ 10, 000
}
. We991

observe the runtime of socratic to be just 11.8 seconds for992

Gödel logic and 9.38 seconds for Łukasiewicz logic. If we993

instead use closed intervals throughout, measured runtimes994

are 17.4 seconds for Gödel and 9.29 seconds for Łukasiewicz.995

7. Dealing with weights996

In some settings, such as LNN (10), weights are assigned to997

subformulas, where each real-valued weight determines the998

influence, or importance, of its respective subformula. For999

example, in the formula σ1 Y σ2, the weight w1 might be1000

assigned to σ1 and the weight w2 assigned to σ2. If 0 < w1 =1001

2w2, this might indicate that σ1 is twice as important as σ21002

in evaluating the value of σ1 Y σ2. Although it might seem1003

natural for weights to be nonnegative and sum to 1, this is1004

not required and LNN does not make this assumption.1005

As an example of a possible way to incorporate weights,1006

assume that we are using Łukasiewicz real-valued logic, where1007

the value of σ1 Y σ2 is min{1, s1 + s2}, when s1 is the value of1008

σ1 and s2 is the value of σ2. If the weights of σ1 and σ2 are w11009

and w2, respectively, and if both w1 and w2 are nonnegative,1010

then we might take the value of σ1 Y σ2 in the presence of 1011

these weights to be min{1, w1s1 + w2s2}. 1012

We now show how easy it is to incorporate weights into 1013

our approach while still preserving its sound and complete 1014

axiomatization. To deal with weights, we define an expanded 1015

view of what a formula is, defined recursively. Each atomic 1016

proposition is a formula. If σ1 and σ2 are formulas, w1 and 1017

w2 are weights, and α is a binary connective (such as &) then 1018

(σ1 ασ2, w1, w2) is a formula. Here w1 is interpreted as the 1019

weight of σ1 and w2 as the weight of σ2 in the formula σ1 ασ2. 1020

Also, if σ is a formula, and w is a weight, then (¬σ,w) is a 1021

formula, where w is interpreted as the weight of σ. We modify 1022

our definition of subformula as follows. The subformulas of 1023

(σ1 ασ2, w1, w2) are σ1 and σ2, and the subformula of (¬σ,w) 1024

is σ. 1025

If α is a weighted binary connective, then fα now has four 1026

arguments, rather than two. Thus, fα(s1, s2, w1, w2) is the 1027

value of the formula (σ1 ασ2, w1, w2) when the value of σ1 is 1028

s1, the value of σ2 is s2, the weight of σ1 is w1, and the weight 1029

of σ2 in w2. 1030

Our axiom and inference rules are just as before, except 1031

that we modify the definition of a good tuple for Rule 7. In the 1032

sentence (σ1, . . . , σk;S), let us say that the tuple (s1, . . . , sk) 1033

in S is good if (a) for weighted binary connective α, we have 1034

sm = fα(si, sj , w1, w2) when σm is (σi ασj , w1, w2), and (b) 1035

for unweighted connectives it is the same as before. 1036

We can extend Theorem 3.4 (soundness and completeness) 1037

and Theorem 4.1 (closure under Boolean combinations) to deal 1038

with our sentences (σ1, . . . , σk;S) that include weights. The 1039

proofs go through just as before, where we use the modified 1040

notion of good tuple in Rule 7. Thus, we obtain the following 1041

theorems. 1042

Theorem 7.1 Our axiom system for MD-sentences as 1043

adapted for weights is sound and complete. 1044

Theorem 7.2 Each finite Boolean combination of sentences 1045

(σ1, . . . , σk;S) that include weights is equivalent to a single 1046

such sentence. 1047

What about the decision procedure that we shall give in 1048

Section 6? Its use of a polynomial-time algorithm for linear 1049

programming continues to work so long as weights wi are fixed 1050

rational constants and the weighting functions are piecewise 1051

linear, such as w1s1 + w2s2 (possibly including min or max). 1052

As a result, the decision procedure and its implementation 1053

stand. 1054

8. Issues in treating the values as probabilities 1055

In this section, where we treat the truth values as probabilities, 1056

we are not using a standard real-valued logic but instead the 1057

rules of probability. We interpret the truth value of each 1058

propositional formula ϕ as being the probability of ϕ. Assume 1059

that we have n atomic propositions A1, . . . , An. There are then 1060

2n members of the Venn diagram, each given by a formula 1061

B1 ∩ · · · ∩ Bn, where Bi is either Ai or Āi, for 1 ≤ i ≤ n, 1062

where Āi is the complement of Ai. Instead of conditions (a) 1063

and (b) in definition of a good tuple for Rule 7, we have new 1064

restrictions (a′) and (b′), which say: (a′) If every member of 1065

the Venn diagram appears as a formula σi in (σ1, . . . , σk, S), 1066

then the value assigned to each member of the Venn diagram 1067

is nonnegative, and the sum of the values of the members of 1068
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the Venn diagram is 1, and (b′) if every member of the Venn1069

diagram appears as a formula σi in (σ1, . . . , σk, S), and if the1070

formula σj is logically equivalent to the disjoint union of the1071

members τ1, . . . , τm of the Venn diagram, then the value of σj1072

is the sum of the values of τ1, . . . , τm. In particular, if σi is1073

logically false (such as being the conjunction of two different1074

members of the Venn diagram), then the value of σi is 0.1075

Note that this computation in (b′) gives the correct value1076

no matter what probabilistic dependence or independence1077

holds among the atomic propositions. For convenience, if we1078

wish, we can create new variables such as ϕ1|ϕ2 (whose value,1079

intuitively, is the value for ϕ1 given ϕ2), and then add a clause1080

to the conditions of a good tuple that says that if c is the1081

sum of the values of the members of the Venn diagram whose1082

disjoint union is logically equivalent to ϕ1 ∩ ϕ2, if d is the1083

sum of the values of the members of the Venn diagram whose1084

disjoint union is logically equivalent to ϕ2, and if d 6= 0, then1085

the value of ϕ1|ϕ2 is c/d. This is useful in Bayesian nets, where1086

the probability of an event is dependent on the probability of1087

its parents.1088

The new inference rule that is our modification of Rule 71089

is clearly sound, and the proof of completeness goes through1090

as before, but using our new notion of a good tuple. Just as1091

we closed under subformulas before applying Rule 7 in the1092

completeness proof earlier, here we include every member of the1093

Venn diagram in the MD-sentence in the proof of completeness.1094

Also, by a similar argument to that in the proof of Theo-1095

rem 4.1, we obtain closure under Boolean combinations. We1096

thus have the following two theorems, analogous to Theo-1097

rems 7.1 and 7.2.1098

Theorem 8.1 Our axiom system for MD-sentences as1099

adapted for probabilities is sound and complete.1100

Theorem 8.2 Each finite Boolean combination of sentences1101

(σ1, . . . , σk;S) that deal with probabilities is equivalent to a1102

single such sentence.1103

Note that we are not requiring that every sentence contains1104

as formulas every member of the Venn diagram, just as we1105

did not require in the propositional case that every sentence is1106

closed under subformulas. Instead, just as in the completeness1107

argument in the propositional case where we passed in the1108

proof using the axiomatization to a sentence closed under1109

subformulas, here we pass in the proof of completeness using1110

the axiomatization to a sentence that contains all members1111

of the Venn diagram. Thus, the fact that we are making use1112

of the Venn diagram is “behind the curtains” – the user need1113

not know this when writing his sentences. Of course, if the1114

user applies Rule 7 himself, then he needs to be aware of the1115

Venn diagram.1116

Finally, we note that our sound and complete axiomati-1117

zation can give us a decision procedure analogous to that in1118

Section 6. In the special case where each atomic proposition1119

Ai is assigned a fixed value ai, Hailperin (27) gives a decision1120

procedure that is essentially based on the Venn diagram.1121

9. Related work1122

Rosser (28) comments on the possibility of considering formu-1123

las whose value is guaranteed to be at least θ. For example,1124

if fY(s1, s2) = max{s1, s2} and f¬(s) = 1− s , then the truth1125

value of A Y ¬A is always at least 0.5. But Rosser rejects this1126

approach, since he notes that there are uncountably many 1127

choices for θ, but only countably many recursively enumerable 1128

sets (and an axiomatization would give a recursively enumer- 1129

able set of valid formulas). 1130

Belluci (29) investigates when the set of formulas with 1131

values at least θ is recursively enumerable. Font et al. (30) 1132

consider the question of what they call “preservation of degrees 1133

of truth”. They give a method for deciding, for a fixed θ, if σ 1134

having a value at least θ implies that ϕ has value at least θ. 1135

Novák (31) considered a logic with sentences that assign 1136

a truth value to each formula of first-order real-valued logic. 1137

Thus, using our notation, his sentences would be of the form 1138

(ϕ; {θ}), where ϕ is a formula in first-order real-valued logic, 1139

and θ is a single truth value. He gave a sound and complete 1140

axiomatization. 1141

Another interesting logic is rational Pavelka logic (RPL), 1142

an expansion of the standard Łukasiewicz logic where rational 1143

truth-constants are allowed in formulas. For example, if r 1144

is a rational number, then the formula r → ϕ says that the 1145

value of ϕ is at least r, and the formula ϕ → r says that 1146

the value of ϕ is at most r. Therefore, this logic can express 1147

the MD-sentences (ϕ;S), when S is the union of a finite 1148

number of closed intervals. However, it cannot express strict 1149

inequalities. For example, it cannot express that the value of ϕ 1150

is strictly greater than 0.5.† This drawback can be solved (20) 1151

by expanding the logic with the Baaz-Monteiro 4 operator 1152

(given 4x = 1 if x = 1 and 4x = 0 otherwise). Such an 1153

extension keeps finite-strongly completeness (for Łukasiewicz 1154

logic). RPL was introduced by Hájek in (13) as a simplification 1155

of the system proposed by Pavelka in (32) in which the syntax 1156

contained a truth-constant for each real number of the interval 1157

[0,1]. Hájek showed that an analogous logic could be presented 1158

as an expansion of Łukasiewicz propositional logic with truth- 1159

constants only for the rational numbers in [0,1] and gave a 1160

corresponding completeness theorem. Moreover, first-order 1161

fuzzy logics with real or rational constants have also been 1162

deeply studied starting from Novák’s extension of Pavelka’s 1163

logic to a first-order predicate language in (33) (see e.g. (34)). 1164

Each of (35), (36) and (23) give decision procedures that 1165

partially cover the situation we allow in Section 6. The for- 1166

mer two support only Łukasiewicz logic. The third, like our 1167

decision procedure, works for a variety of logics, though it is 1168

explicitly established in (23) that their approach does not sup- 1169

port discontinuous operators. Accordingly, unlike our decision 1170

procedure, their approach does not work for Gödel logic given 1171

its discontinuous → operator. 1172

In addition, (24) and (37) present decision procedures based 1173

on satifiability modulo theories (SMT). The former of these 1174

implements mNiBLoS, a versatile means of defining and rea- 1175

soning in a broad class of fuzzy logics as thoroughly considered 1176

in (13). Their approach, however, does not inherently support 1177

reasoning in terms of truth value intervals as SoCRAtic does 1178

for MD-sentences. (37) presents special cases handling using 1179

the Z3 SMT solver for Łukasiewicz and Gödel logic and, in 1180

particular, for the finite multi-valued cases of these. This spe- 1181

cialized approach demonstrates speedup over (24)’s mNiBLoS 1182

†This follows from the stronger fact that if A1, . . . , Ar are the atomic propositions, ϕ is a for-
mula, and G is the set of all value assignments to the atomic propositions that give ϕ the
truth value 1, then since the operators of standard Łukasiewicz logic are continuous (and so
the value of ϕ is a continuous function of the value of the atomic propositions), it follows that
{(g(A1), · · · , g(Ar)) : g ∈ G} is a closed subset of [0, 1]r . Note that if r = 0.5,
then even though the formula A → r has the value 1 when the value a of A is at most 0.5, the
negation¬(A→ r) does not have the value 1 when a > 0.5; instead it has the value a−0.5.
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but effectively solves a different problem and so is less directly1183

applicable to our task.1184

There are various papers in the algebraic framework of1185

residuated lattices and the proof-theoretic framework of hy-1186

persequents. For example, see (38). Our approach does not1187

seem to extend to such real-valued logics.1188

10. Conclusions1189

We give a sound and finite-strongly complete axiomatization1190

for a rich, novel class of multidimensional sentences about real-1191

valued formulas. By being parameterized, our axiomatization1192

covers a large set, including all of the common real-valued1193

logics in the literature. Our axiomatization allows us to include1194

weights on formulas and extends to probabilities. Having1195

multidimensional sentences is the key to the power of our1196

approach. An interesting open problem is to make use of1197

multidimensional sentences in other contexts.1198

We provide a decision procedure that covers a subset of1199

these real-valued logics. However, decision procedures going1200

beyond this subset remain future work. Further, the procedure1201

shown should be thought of as a baseline or proof of concept1202

only, not intended to be efficient in practice. Designing efficient1203

inference procedures for real-valued logics is a major area for1204

further development.1205

Our results give us a way to establish such properties1206

for neuro-symbolic systems that aim or purport to perform1207

logical inference with real values. Because Logical Neural1208

Networks (10) are exactly a weighted real-valued logical system1209

implemented in neural network form, an important immediate1210

upshot of our results for the weighted case is that they provide1211

provably sound and complete logical inference for LNN. Such a1212

result has not previously been established for a neuro-symbolic1213

approach to our knowledge. It is an open question as to1214

whether deep learning models trained “in the wild” (i.e., not1215

deliberately as in LNN (11)) achieve logical behavior. While1216

one of our main motivations was to pave the way forward for1217

AI systems, our results are fundamental, filling a long-standing1218

gap in a very old literature, and can be applied well beyond1219

AI.1220
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