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Abstract. We study multi-structural games, played on two sets A and B of structures.
These games generalize Ehrenfeucht-Fräıssé games. Whereas Ehrenfeucht-Fräıssé games
capture the quantifier rank of a first-order sentence, multi-structural games capture the
number of quantifiers, in the sense that Spoiler wins the r-round game if and only if there
is a first-order sentence ϕ with at most r quantifiers, where every structure in A satisfies ϕ
and no structure in B satisfies ϕ. We use these games to give a complete characterization
of the number of quantifiers required to distinguish linear orders of different sizes and we
develop machinery for analyzing structures beyond linear orders.

1. Introduction

Model theory has a number of techniques for proving inexpressibility results. However,
as noted in [Fag93], almost none of the key theorems and tools of model theory, such as
the compactness theorem and the Löwenheim-Skolem theorems, apply to finite structures.
Among the few tools of model theory that yield inexpressibility results for finite structures
are Ehrenfeucht-Fräıssé games [Ehr61, Fra54], henceforth E-F games. In this paper we shall
entirely be concerned with finite structures over finite relational vocabularies. For definitions
of these concepts, we refer the reader to [Imm99].

The standard E-F game is played by “Spoiler” and “Duplicator” on a pair (A,B) of
structures over the same first-order vocabulary τ , for a specified number r of rounds. In each
round, Spoiler chooses an element from A or from B, and Duplicator replies by choosing
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an element from the other structure. In this way, they determine sequences of elements
a1, . . . , ar ∈ A and b1, . . . , br ∈ B, repetitions allowed, which, in addition to any possible
constants defined on A and B, define substructures A′ of A and B′ of B. The analysis can
be phrased as attempting to define a sequence of functions f , g, and f ∪ g. If any of these
functions are not well-defined then Spoiler wins. The function f :{a1, ...., ar}! {b1, ...., br}
is defined by f(ai) = bi for i = 1, ..., r. If there are i and j with 1 ≤ i < j ≤ r such that
ai = aj but bi ̸= bj , then f is not well-defined. The partial function g:A! B is defined so
that g(a) = b if a and b are associated with the same constant symbol in τ . If after a round
of play there are two constant symbols ci, cj with a ∈ A associated with both ci and cj , but
different elements of B associated with ci and cj , then g is not well-defined. The joint partial
function f ∪ g stipulates that (f ∪ g)(a) = f(a) if f is defined on a and (f ∪ g)(a) = g(a) if
g is defined on a. If f and g are well-defined and agree on common elements, then f ∪ g is
well-defined. If it is not well-defined, or if f ∪ g is not an isomorphism from its domain A′ to
its image B′, then Spoiler wins. Finally, if f ∪ g is well-defined, and f ∪ g is an isomorphism
from A′ to B′, then Duplicator wins. In this latter case of a Duplicator win, we say that the
sequences ⟨a1, ..., ar⟩ and ⟨b1, ..., br⟩ of selected elements “give rise to a partial isomorphism”
between A and B.

The equivalence theorem for E-F games [Ehr61, Fra54] characterizes the minimum
quantifier rank of a sentence ϕ over τ that is true for A but false for B. The quantifier rank
qr(ϕ) is defined as zero for a quantifier-free sentence ϕ, and inductively:

qr(¬ϕ) = qr(ϕ),

qr(ϕ ∨ ψ) = qr(ϕ ∧ ψ) = max{qr(ϕ), qr(ψ)},
qr(∀xϕ(x)) = qr(∃xϕ(x)) = qr(ϕ) + 1,

Theorem 1.1 (Equivalence Theorem for E-F Games). Spoiler wins the r-round E-F
game on (A,B) if and only if there is a 1st order sentence ϕ of quantifier rank at most r
such that A |= ϕ while B |= ¬ϕ.

The “if” direction of this theorem is fairly easy to prove by induction on r. This is the
“useful” direction, which is used to prove inexpressibility results. The “only if” direction
is somewhat tricky to prove; intuitively, it tells us that any technique for proving that a
certain property cannot be defined by a first-order sentence with a certain quantifier rank
can, in principle, be replaced by a proof via E-F games. See [Imm99, Lib12] for a proof and
extended discussion.

We investigate a variant of E-F games that we call multi-structural games. These games
make Duplicator more powerful and characterize the number of quantifiers rather than
quantifier rank. It is straightforward to see that the minimum number of quantifiers needed
to define a property P is the same as the minimum size of the quantifier prefix of a sentence
in prenex normal form that is needed to define property P . This is because converting a
sentence into prenex normal form does not increase the number of quantifiers.

As we discovered during review of this paper’s conference version [FLRV21a] and
acknowledged there, an equivalent of our multi-structural game was described in the journal
version of Neil Immerman’s paper “Number of Quantifiers Is Better Than Number of Tape
Cells” [Imm81]. Its conference version [Imm79] did not mention the game.1 In [Imm81],

1We reference two personal communications with Immerman as [Imm21], one beforehand where he raised
the related size game described in [AI03] and discussed in section 1.1, and one after our discovery that
informed the present discussion.
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Immerman called it the “separability game” and showed that it characterizes the number
of quantifiers, without providing further results. Just prior to the conclusion of [Imm81],
Immerman remarked,

“Little is known about how to play the separability game. We leave it here as a
jumping off point for further research. We urge others to study it, hoping that the
separability game may become a viable tool for ascertaining some of the lower bounds
which are ‘well believed’ but have so far escaped proof.”

Indeed, as our paper shows, analysis of the multi-structural games is often quite confounding,
with many delicate issues.

We now define the rules of the multi-structural game (henceforth, “MS game”). There
are again two players, Spoiler and Duplicator, and there is a fixed number r of rounds.
Instead of being played on a pair (A,B) of structures with the same vocabulary (as in an
E-F game), it is played on a pair (A,B) of sets of structures, all with the same vocabulary.
For k with 0 ≤ k ≤ r, by a labeled structure after k rounds, we mean a structure along with
a labeling of which elements were selected from it in each of the first k rounds. Let A0 = A
and B0 = B. Thus, A0 represents the labeled structures from A after 0 rounds, and similarly
for B0. If 1 ≤ k < r, let Ak be the labeled structures originating from A after k rounds,
and similarly for Bk. In round k + 1, Spoiler either chooses an element from each member
of Ak, thereby creating Ak+1, or chooses an element from each member of Bk, thereby
creating Bk+1. Duplicator responds as follows. Suppose that Spoiler chose an element from
each member of Ak, thereby creating Ak+1. Duplicator can then make multiple copies
of each labeled structure of Bk, and choose an element from each copy, thereby creating
Bk+1. Similarly, if Spoiler chose an element from each member of Bk, thereby creating Bk+1,
Duplicator can then make multiple copies of each labeled structure of Ak, and choose an
element from each copy, thereby creating Ak+1. Duplicator wins if there is some labeled A
in Ar and some labeled B in Br where the labelings (in addition to any constants) give rise
to a partial isomorphism in the same sense as in an E-F game. Otherwise, Spoiler wins.

Note that on each of Duplicator’s moves, Duplicator can make “every possible choice,”
via the multiple copies. Making every possible choice creates what we call the oblivious
strategy. It is easy to see that Duplicator has a winning strategy if and only if the oblivious
strategy is a winning strategy.

We shall prove the following theorem. It is analogous to Theorem 1.1 for ordinary E-F
games.

Theorem 1.2. Equivalence Theorem for MS Games: Spoiler wins the r-round MS
game on (A,B) if and only if there is a 1st order sentence ϕ with at most r quantifiers such
that A |= ϕ for every A ∈ A while B |= ¬ϕ for every B ∈ B.

We now give an interesting refinement of the Equivalence Theorem (although, as we
shall discuss, it does not seem to directly imply the Equivalence Theorem). Let Q1 · · ·Qr

be a sequence of quantifiers. We now define the “Q1 · · ·Qr MS game”. It is an r-round
MS game, with the following restrictions on Spoiler. If Qk is an existential quantifier, then
Spoiler’s kth move must be in A, and otherwise it must be in B. We then have the following
result.

Theorem 1.3. Fixed Prefix Equivalence Theorem for MS Games: Spoiler wins the
Q1 · · ·Qr MS game on (A,B) if and only if there is a 1st order sentence ϕ in prenex normal
form with exactly r quantifiers, in the order Q1 · · ·Qr, such that A |= ϕ for every A ∈ A
while B |= ¬ϕ for every B ∈ B.
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On the face of it, Theorem 1.3 does not seem to directly imply Theorem 1.2, for the
following reason. It is a priori conceivable that Spoiler’s winning strategy in an r-round
game is to move first in A, and then, depending on Duplicator’s response, to move in either
A or B. So there is then no prefix Q1 · · ·Qr dictating where Spoiler must move. In fact,
in an E-F game (but not in a MS game2), it can indeed happen that Spoiler can win in 2
rounds, and where Spoiler plays in the second round depends on how Duplicator played in
the first round. An example of where this phenomenon can take place in a 2-round E-F
game is via the sentence ∃x(∀yB(x, y) ∧ ∃yR(x, y)). The proof of Theorem 1.2 appears in
Section 2. The proof of Theorem 1.3 is almost the same as the proof of Theorem 1.2 and
requires just very minor changes.

There is an interesting and non-obvious difference between E-F games and MS games.
Let us say that a player makes a move “on top of” a previous move if the player selects
an element c of a structure, and the same element c had been selected by either player in
an earlier round. It is easy to see that in an E-F game, it never helps Spoiler to make a
move on top of a previous move (it only wastes a round). On the other hand, in MS games
the issue of playing on top of a previous move is a frequent consideration for us. In fact, a
detailed analysis shows that playing a move on top of a previous move may be a necessary
part of a winning Spoiler strategy (see Observation B.1).

We now give an example (Figure 1) that shows differences between the E-F game and
the MS game, and what they say about quantifier rank vs. number of quantifiers. Consider
the following two structures B (for “Big”) and L (for “Little”), over τ = {<}, where < is
the binary “less than” relation. The vertex labels are not part of the structures. Elements
that appear to the left, within the same structure, are considered to be less than elements to
the right. B is a linear order on 3 elements and L is a linear order on two elements. In the
text of this paper we write B(i) (or L(i)) to denote the ith element in the linear order B
(respectively, L), while in the figures, for economy of space, we label the ith vertex instead
by Bi (respectively, Li). Further, rather than use the notation <(x, y) we shall use the

Figure 1: An example showing the difference between MS and E-F games.

customary x < y notation.
Suppose first that the number r of rounds is 2. We show that Spoiler wins the E-F

game. On Spoiler’s first move, Spoiler selects vertex B(2) in B. Duplicator must select
either L(1) or L(2) in L. If Duplicator chooses L(1), then Spoiler selects B(1) in B. After
Duplicator selects L(2) in L Spoiler wins since the mapping given by B(2) 7! L(1) and
B(1) 7! L(2) fails to be a partial isomorphism because the “less than” relationship is flipped.
If Duplicator had instead selected L(2) in the first round, then Spoiler would have won, by
a similar argument, by selecting B(3) in B in the second round.

The fact that Spoiler wins the 2-round game over (B,L) tells us (by Theorem 1.1) that
there is a sentence ϕ of quantifier rank at most 2 such that B |= ϕ while L |= ¬ϕ. Such a
sentence is: ∃x(∃y(y < x) ∧ ∃y(x < y)).

2Since we can assume Duplicator plays obliviously, Spoiler’s moves are not conditioned on what Duplicator
plays.
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Now let us consider the 2-round MS game over (B,L), where B = {B} and L = {L}. We
show that unlike the 2-round E-F game, in the 2-round MS game, Duplicator wins. It is easy
to see that Duplicator wins if Spoiler’s first-round move is anything other than B(2). Let us
see what happens if Spoiler’s first move is B(2), which was a winning move for Spoiler in the
2-round E-F game. Then on Duplicator’s first move, Duplicator makes a second copy of L and
in one copy, call it L1, Duplicator selects L(1), and in the other copy, call it L2, Duplicator
selects L(2). Let us now consider Spoiler’s possible second round responses. Suppose first
that Spoiler’s second round move is in B. If Spoiler selects B(3), then Duplicator selects
L(2) in L1 and the mapping B ! L1 such that B(2) 7! L(1), B(3) 7! L(2) yields a partial
isomorphism. On the other hand, if Spoiler selects B(1), then Duplicator selects L(1) in L2

and B ! L2 such that B(1) 7! L(1), B(2) 7! L(2) yields a partial isomorphism. Section 4
will complete the analysis of a Duplicator win. Since Duplicator wins the 2-round game, it
follows by Theorem 1.2 there is no sentence with just two quantifiers that distinguishes B
from L.

The focus of our analysis of MS games in this paper is finite linear orders. Henceforth,
all linear orders are assumed to be finite. In the case of E-F games, one has the following:

Theorem 1.4 [Ros82]. Let f(r) = 2r − 1. In an r-round E-F game played on two linear
orders of different sizes, Duplicator wins if and only if the size of the smaller linear order is
at least f(r).

Since part of the proof of Theorem 1.4 is left to an exercise in [Ros82], we give a proof
in Appendix A. Further, the proof illustrates a simple recursive idea that is surprisingly not
available to us in the analysis of linear orders from the vantage point of MS games.

Theorem 1.4 together with Theorem 1.1 imply that f(r) is the maximum value k such
that a sentence of quantifier rank r can distinguish linear orders of size k and above from
those of size smaller than k.

In analogy to this function f , and in an effort to arrive at a parallel theorem to Theorem
1.4, we make the following definition.

Definition 1.5. Define the function g : N! N such that g(r) is the maximum number k
such that there is a sentence with r quantifiers that can distinguish linear orders of size k or
larger, from linear orders of size less than k.

To see that g is well-defined, observe that the sentence

∃x1 · · · ∃xr
∧

1≤i<r

xi < xi+1, (1.1)

distinguishes linear orders of size r or larger from linear orders of size less than r. Furthermore,
there are only finitely many inequivalent sentences with up to r quantifiers that include only
the relation symbols < and =, some fraction of which distinguish linear orders of some size
k or greater from linear orders of size less than k. There is therefore a maximum such k ≥ r,
which is then g(r).

After building up quite a bit of machinery we eventually arrive at the following:

Theorem 1.6. The function g takes on the following values: g(1) = 1, g(2) = 2, g(3) =
4, g(4) = 10, and for r > 4,

g(r) =

{
2g(r − 1) if r is even,

2g(r − 1) + 1 if r is odd.
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The value g(3) = 4 is a curious anomaly. If it had turned out that g(3) = 5, then
the entire induction could be founded on r = 1. The proof of Theorem 1.6 is a careful
mathematical journey to restore this induction founded instead at r = 4.

The following theorem for MS games is the analog of Theorem 1.4 for E-F games, and
describes precisely when Duplicator (alternatively, Spoiler) wins r-round MS games on two
linear orders of different sizes.

Theorem 1.7. In an r-round MS game played on two linear orders of different sizes
Duplicator has a winning strategy if and only if the size of the smaller linear order is at least
g(r).

It is important to note that neither the if nor only if portion of this theorem is implied
by the definition of g.

Both E-F games and MS games are used to prove inexpressibility results by showing
there is a wining strategy for Duplicator. It is typically easier to demonstrate a winning
strategy for Duplicator in E-F games than in MS games, for several reasons. First, it is easier
to reason about only two structures at a time rather than about many structures at a time.
Second, in MS games, there is a tactic available to Spoiler (that is of no use in E-F games)
to make one move on top of an earlier move in one of the structures, and this can greatly
complicate the analysis. On the other hand, in MS games, Duplicator has the advantage of
being able to make multiple copies of structures and make different moves on the various
copies. This feature can be very useful in proving a winning strategy for Duplicator.

A similar phenomenon of modifying the rules of the game to make it easier for Duplicator
to win arose in defining and making use of Ajtai-Fagin games [AF90] rather than making use
of the originally defined Fagin games [Fag75] for proving inexpressibility results in monadic
existential second-order logic (called “monadic NP” in [FSV95]). In Fagin games, there is a
coloring round (a choice of the combinations of existentially-quantified monadic predicates)
where Spoiler colors A then Duplicator colors B, and then an ordinary E-F game is played
on the colored structures. In Ajtai-Fagin games, Spoiler must commit to a coloring of A
without knowing what the other structure B is. Fagin, Stockmeyer, and Vardi [FSV95] use
Ajtai-Fagin games to give a much simpler proof that connectivity is not in monadic NP than
Fagin’s original proof in [Fag75]. In extending MS games to second-order logic, which we
think is an interesting and important future step (and which is straightforward to define),
these games can easily simulate Ajtai-Fagin games. This is because we can replace structure
A by the singleton set A = {A}, and replace the structure B by a set B that contains all
possible choices for B that Duplicator might choose in the Ajtai-Fagin game after Spoiler
colors A.

1.1. Related work. Since our results can be viewed as giving information about the size of
prefixes of sentences in prenex normal form, we begin by discussing some other papers that
focus on such prefixes.

Rosen [Ros05] shows that there is a strict prefix hierarchy, based on the prefixes of
sentences written in prenex normal form. The proof involves standard E-F games.

Dawar and Sankaran [DS21] consider E-F games, each of which focuses on a fixed prenex
prefix. For example, there is one game that deals with the prenex prefix ∃∀∃. For each of
these prefixes, they define an E-F game on a pair (A,B) of structures. For example, in
the ∃∀∃ game, Spoiler must move first in A, then in B, and then in A. Their Theorem 2.3
says that Spoiler has a winning strategy in a prefix game if and only if there is a sentence
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in prenex normal form with exactly that prefix that is true about A but not about B.
Unfortunately, the “only if” direction of their Theorem 2.3 is false [Daw21]. This is because
if A is a linear order of size 5 and B is a linear order of size 4, and the prefix is ∃∀∃, then it
turns out that Spoiler wins that 3-round prefix game, but it follows from our Theorem 1.6
that A and B agree on all sentences with at most three quantifiers, and in particular on all
sentences ∃x∀y∃zϕ(x, y, z), where ϕ is quantifier-free. Fortunately, in their paper, Dawar
and Sankaran just make use of the “if” direction of Theorem 2.3, which is correct [Daw21].

We now discuss some papers that, like ours, modify E-F games by allowing a pair of
sets of structures, rather than simply a pair of structures. Adler and Immerman [AI03] use
a type of E-F game that involves a pair of sets of structures, where, as in our MS games,
Duplicator can make multiple copies of structures and make different moves on them. Adler
and Immerman’s concern is to obtain results about the size of sentences (rather than the
number of quantifiers) in transitive closure logic (first-order logic with the transitive closure
operator). The rules of the game are rather complicated, since it must deal with transitive
closure logic and capture the size of sentences.

Hella and Vilander [HV19] build on Adler and Immerman’s game, and their goal is
also to determine sentence size (but in modal logic). The rules of their game are also fairly
complicated.

Grohe and Schweikardt [GS05] introduce a method (extended syntax trees) that cor-
responds to a game tree that is constructed by the two players in the Adler-Immerman
game. They use these to study the size of sentences in the 2, 3 and 4-variable fragments of
first-order logic on linear orders.

Lotfallah [Lot04] introduces a class of E-F-like games played on a pair of sets of structures
rather than on a pair of single structures. In Lotfallah’s games, Duplicator cannot make
multiple copies of structures. A follow-up paper by Lotfallah and Youssef [LY05] characterizes
certain first and second order prefix types but does not involve sets of structures.

Hella and Väänänen [HV15], like Lotfallah, introduce a class of E-F-like games played
on a pair of sets of structures rather than on a pair of single structures, where Duplicator
cannot make multiple copies of structures. Hella and Väänänen use one variant of their game
to characterize the size of sentences needed for separating sets of structures in propositional
logic and a second variant to characterize the size of sentences needed for separating sets of
structures in first-order logic. The first-order game is used for proving an exact bound on
the size of existential sentences needed to define the length of linear orders.

1.2. Overview of the Sections. In Section 2 we prove the Equivalence Theorem 1.2. In
Section 3 we establish certain preliminary terminology and notation and prove that the
property of Duplicator having a winning strategy on two sets of structures gives rise to an
equivalence relation over sets of structures with the same signature. The ensuing sections
establish upper and lower bounds on the function g(r) associated with Theorem 1.6 until we
are able to observe that we have tight bounds in all cases. In Section 4 we establish upper
bounds on g(r), for 2 and 3. (The trivial tight bound g(1) = 1 is established in Section 3.)
The natural next step would be to proceed to higher values of r using a type of recursive
argument, but in Section 5 we show why the natural recursive argument for MS games does
not work. For pedagogical reasons, in Section 6, we jump to establishing lower bounds for
g(r). We then jump back to establishing upper bounds in Section 7, where we introduce a
new type of game, an MS game with “atoms”, which allows us to recurse and prove upper
bounds for all r. The upper bounds are then seen to be tight with respect to our lower
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bounds and hence, in Section 8, we are able to prove Theorem 1.6. The machinery that
we have built up then enables a quick proof of Theorem 8.4, which is just the syntactic
equivalent of Theorem 1.7 from the Introduction (there stated game theoretically). We note
that while games with “atoms” are an important part of our upper bound proofs, the final
sentences guaranteed by Definition 1.5 and Theorem 1.6 do not contain atoms. We present
our conclusions in Section 9.

2. Proof of the Equivalence Theorem

To prove Theorem 1.2 we are going to add a special constant just prior to the play of
each round that will help us maintain the induction. These constants, which we denote by
c1, ..., cr are in addition to whatever constants may exist in the vocabulary τ . We write
(A; . . . ; c1 a1) to mean the structure obtained after assigning c1 to the element a1 in A,
and so on.

Proof of Theorem 1.2. Both directions are proved by induction on the number r of rounds.
For r = 0, Spoiler winning in 0 rounds means that for every A ∈ A and B ∈ B, the
restrictions A′, B′ of A and B (respectively) to their constants must be non-isomorphic.
For every A ∈ A, we can write a quantifier-free sentence ϕA that characterizes A′ up to
isomorphism, using equality to identify any coinciding constants. Then take ϕ to be the
disjunction of all ϕA – note that even if A is infinite, there are only finitely many distinct
ϕA. Then A |= ϕ for all A ∈ A. Now consider any B ∈ B. We claim that B |= ¬ϕ. As ¬ϕ is
a conjunction, this is equivalent to B |= ¬ϕA for every A. Suppose not, then we would have
B ⊭ ¬ϕA, i.e., B |= ϕA. But because ϕA characterizes A′ up to isomorphism, this would
make B′ isomorphic to A′, contradicting that Spoiler wins. Hence ϕ is a quantifier-free
sentence that distinguishes A and B.

Conversely, if there is a quantifier-free sentence ϕ that distinguishes A and B, then
there cannot exist A ∈ A and B ∈ B such that the restrictions A′ and B′ to the constants
appearing in ϕ are isomorphic. Thus, Duplicator loses without further play.

Now suppose r ≥ 1 and the equivalence is true for r − 1. We induct on the first move
rather than the last move of the games. For the forward direction, suppose Spoiler can
win—say by playing in B. For each B ∈ B, Spoiler selects an element b ∈ B. Duplicator
replies by replicating every A ∈ A and playing every possible a ∈ A. Now let us assign the
constant c1 to the element played on each of the structures in A and B. The resulting game
position (A1,B1), which includes the new constant c1 in each structure, is winnable in r − 1
rounds by Spoiler. By the induction hypothesis, there is a sentence ψ with r − 1 quantifiers
that distinguishes B1 from A1. Now define ϕ = (∃x1)ψ′ where ψ′ replaces all occurrences
of c1 in ψ by x1. (This is alright even in degenerate cases where c1 does not occur in ψ.)
For every B ∈ B, we have B |= ϕ because there is a b ∈ B such that (B; . . . ; c1 b) |= ψ,
namely the b that Spoiler played in B. Hence it suffices to show that A |= ¬ϕ = (∀x1)¬ψ′

for every A ∈ A. After Duplicator’s play, A was replaced by

{(A; . . . ; c1 a1), (A; . . . ; c1 a2), . . . , (A; . . . ; c1 am)},
where A = {a1, . . . , am}. Since ψ distinguishes B1 from A1, we have (A; . . . , c1 aj) |= ¬ψ
for each j = 1, . . . ,m. It follows that A |= (∀x1)¬ψ′. The case where Spoiler wins by playing
in A is handled symmetrically.

Going the other way, suppose ϕ is a prenex sentence with r quantifiers that distinguishes
A from B. If the leading quantifier is ∀ then ¬ϕ has leading quantifier ∃ and distinguishes B
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from A, so we can reason by symmetry. So let ϕ = (∃x1)ψ′ for some ψ′ and take ψ to be
the sentence ψ′ with x1 replaced everywhere by the special constant symbol c1. For every
A ∈ A, A |= ϕ, so there exists a1 ∈ A such that (A; . . . ; c1 a1) |= ψ. Spoiler can play
such an element a1 in every A. Now every B ∈ B models ¬ϕ = (∀x1)¬ψ′. For every b ∈ B,
Duplicator creates the structure (B; . . . ; c1 b), but regardless of b, it models ¬ψ. Thus, ψ
distinguishes the resulting set A1 from Duplicator’s B1, has r− 1 quantifiers, and includes c1
along with any previous constants. By the induction hypothesis, Spoiler wins from (A1,B1)
in r − 1 rounds, so Spoiler wins from (A,B) in r rounds.

Proof of Theorem 1.3. In both directions of the induction, if the first quantifier Q1 is fixed
to be ∃ or fixed to be ∀, then this limits which case can arise within the induction step, but
does not affect its validity.

3. Preliminaries

Definition 3.1. Let A = {A} and B = {B} be two singleton sets of structures. Write
A ≡r B iff Duplicator has a winning strategy for MS games of r rounds on A and B.

An important consequence of Theorem 1.2 is the following.

Lemma 3.2. The relation ≡r is an equivalence relation between singleton sets of structures.

Proof. That the relation≡r is reflexive and symmetric follows immediately from the definition.
For transitivity, suppose there are three singleton sets of structures, A = {A},B = {B} and
C = {C} such that A ≡r B and B ≡r C. By the Equivalence Theorem 1.2, A ≡r B implies
that A and B agree on the same sentences with at most r quantifiers. Similarly, B ≡r C
implies that B and C agree on the same set of sentences with at most r quantifiers. Hence,
A and C agree on these same set of sentences. By the Equivalence Theorem again, it follows
that A ≡r C.
Observation 3.3. Among non-singleton sets of structures, the property of there being a
Duplicator-winning strategy between two sets does not induce an equivalence relation.

The induced relation between pairs of sets of structures can fail to be transitive. To see
this, let A be a graph with no self-loops among the nodes, and let C be a graph with at
least one node with a self-loop. Now let A = {A},B = {A,C}, and C = {C}. Duplicator
wins a 1-round M-S game on A and B simply by focusing on A, and, analogously, Duplicator
wins a 1-round M-S game on B and C simply by focusing on C. However, Spoiler wins the
1-round M-S game on A and C by playing on a node in C that has a self-loop.

We note that Definition 3.1 and Lemma 3.2 are incorrectly stated for sets of structures
in both the LICS conference [FLRV21a] and extended ArXiV [FLRV21b] versions of this
manuscript. The fallacious bit of reasoning is that in the case of non-singleton sets A,B of
structures, the fact that Duplicator has a winning strategy in an r-round M-S game does
not imply that all elements of A and B agree on every r-quantifier sentence, as was claimed
– consider, for example, the sets A and B in the preceding paragraph. We thank Phokion
Kolaitis for pointing out this error to us.

Before proceeding further let us establish some terminology that is intended to make
the reading smoother. In cases where there are multiple linear orders on one side or another
we often refer to the different linear orders as different “boards” that Spoiler and Duplicator
play on.
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When we say a “K versus K ′ game” or a “K vs. K ′ game”, we mean an MS game
played on (A,B) where A consists of a single linear order of size K, and B consists of a
single linear order of size K ′.

We will typically play games where A and B each consist of a single linear order as
above. In this context, as we did in the Introduction, we will use B to denote the big linear
order and L to denote the little linear order.

As is standard in model theory, we assume a non-empty universe so all linear orders are
of size at least 1. With reference to the function g in Definition 1.5, we begin by establishing:

Lemma 3.4. g(1) = 1.

Proof. The sentence ∃x(x = x) is true for all linear orders so that g(1) ≥ 1. Moreover,
Duplicator can win 1-round MS games whenever both linear orders are of size 1 or greater,
which implies that g(1) ≤ 1.

4. Towards Establishing Upper Bounds on g(r)

A potent tool for finding an upper bound k on the value of g(r) will be to find strategies
such that Duplicator can win r-round games on a pair of singleton linear orders whenever
the sizes of the linear orders are at least k. All of our upper bounds are established in this
manner.

Since we have established that g(1) = 1, we start establishing upper bounds at g(2).

Lemma 4.1. Duplicator can win 2-round MS games whenever both linear orders are of size
2 or greater, and hence g(2) ≤ 2.

Proof. In the Introduction we considered a 2-round MS game on two linear orders of sizes
|B| = 3, |L| = 2. Figure 1 is given again here for ease of reference. The Introduction covered

Figure 2: The case |B| = 3, |L| = 2.

the case where Spoiler selects the middle B element, B(2), in the first round. The case
where Spoiler picks an end element from either the L or B boards in the first round is easier
– Duplicator just picks the corresponding end element from the other linear order and she
does not even need to make a second copy of the board to win. For example, in response to
B(1), Duplicator will play L(1), or in response to L(2), Duplicator will play B(3), in either
case leading to simple wins.

In the example given in the Introduction, where Spoiler played B(2), once Duplicator
makes copies and plays different moves in each copy, we render the game after round 1, as
in Figure 3.

To complete the analysis, we must show that Duplicator wins whenever 2 ≤ |L| < |B|.
Let us begin with the case |L| = 2 and |B| > 3. If Spoiler picks an end element from B or
from L, then Duplicator picks the corresponding end element from the opposite side and
wins. On the other hand, if Spoiler picks a non-end element on B, Duplicator picks L(1)
on top and L(2) on bottom, winning just like in the introduction. We are left to consider
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Figure 3: In response to Spoiler playing B(2), Duplicator makes a second copy of the L
board and place L(1) on one board and L(2) on the other board. (The diagrams
omit parentheses.)

the case when 3 ≤ |L| < |B|. Playing end moves from either B or L have the same effect as
before. While if Spoiler picks a non-end element from either B (or L), Duplicator wins by
playing any non-end element from, respectively, L (or B), guaranteeing a 2-round win.

Lemma 4.2. Duplicator can win 3-round MS games on linear orders whenever both linear
orders are of size 4 or greater, and hence g(3) ≤ 4.

Proof. Let us start with the base case |B| = 5, |L| = 4. See Figure 4. Duplicator-winning

Figure 4: The case |B| = 5, |L| = 4.

outcomes associated with all Spoiler 1st round plays, other than B(3), are easy to analyze
and described in the table below. Further explanation of the notation used in the table is
given in the text that follows it.

Round 1 Round 2 Round 3
S D S D

B(1) L(1) D wins by reduction to f(2)
B(2) L(2) B(1) L(1) D wins

B(2) L(2) D wins
B(3) L(3) D wins
B(4) L(3) D wins on this board or board below

L(4)
B(5) L(4) D wins
L(1) B(1) D wins by transposition to Rd2. B(1),L(1)
L(2) B(2) D wins by transposition to Rd2. B(2),L(2)
L(3) B(3) D wins by transposition to Rd2. B(3),L(3)
L(4) B(5) D wins by transposition to Rd2. B(5),L(4)

B(3) L(1) Described in the text
L(2) " "

L(3) " "

L(4) " "

B(4) L(3) Symmetrical to Rd1. B(2),L(2)
B(5) L(4) Symmetrical to Rd1. B(1),L(1)
L(1) B(1) Transposition to Rd1. B(1),L(1)
L(2) B(2) Transposition to Rd1. B(2),L(2)
L(3) B(4) Transposition to Rd1. B(4),L(3)
L(4) B(5) Transposition to Rd1. B(5),L(4)
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A few notes on the table: Moves given in the respective S columns are Spoiler plays
while those given in the D columns are Duplicator plays. When we say that a game is
winnable for Duplicator “by reduction to f(k),” for some k, we mean that the game from
this point on can be won by Duplicator simply as a 1-board standard Ehrenfeucht-Fräıssé
game. Recall the definition of f from Theorem 1.4. In these cases, typically an end element
has been played, and from an Ehrenfeucht-Fräıssé point of view, it is of no benefit to Spoiler
to subsequently play on top of the 1st element, so we may remove these elements from both
L and B and consider the game, in subsequent rounds, to be played solely on the remaining
elements. The game reduces to f(k) if there are k rounds yet to be played and both sets of
remaining elements are at least of size f(k).

When we say that a given sequence of moves X,Y is “symmetrical” to another sequence
of moves X ′, Y ′, we mean that you can arrive at one sequence by taking the mirror image of
the other sequence with respect to the center of the boards, where the other sequence has
already been analyzed.

We say that a sequence of moves is a “transposition” of another sequence of moves if the
end board positions are the same but the sequence of moves leading to that board position
is different.

Note that if Duplicator is able to win in a single additional move by focusing just on a
single board on the B and L sides without any special strategy, we do not describe every
possible move and response sequence (there are just too many), but rather just indicate that
“D wins.”

In response to the one tricky Spoiler 1st round move of B(3), Duplicator creates
additional copies of the L board and makes every possible move, as depicted in Figure 5.
Let’s now analyze the possible Spoiler 2nd round responses.

Figure 5: After Spoiler plays B(3) from the B side, Duplicator plays L(1), L(2), L(3) and
L(4) on different boards on the L side.

Case where Spoiler makes 2nd round move on B:

Round 2
Spoiler Duplicator
B(1) L(1) on 3rd L board insuring a win on that board
B(2) L(2) on 3rd L board insuring a win on that board
B(3) L(3) on 3rd L board insuring a win on that board
B(4) L(3) on 2nd L board insuring a win on that board
B(5) L(4) on 2nd L board insuring a win on that board

Case where Spoiler makes 2nd round moves on L:
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First consider the possibility of Spoiler playing atop an existing move. If he plays atop
L(2) on board 2, or L(3) on board 3, then Duplicator will play atop B(3), ensuring victory
on the associated boards in another move. Analogously, if Spoiler plays on top of both
L(1) on the top board and L(4) on the bottom board, then Duplicator can play atop B(3)
guaranteeing a win on one of these L boards or the other. Thus, we may assume Spoiler
plays atop at most one of the existing moves, with that one move being atop either L(1) or
L(4). Of the at least three boards in which Spoiler does not play on top of existing moves,
the moves are either to the right of the existing moves, or to the left of the existing moves,
and hence, there must be at least two played to one side or the other of the existing moves.
Without loss of generality, assume that at least two of these moves are to the right of the
existing moves.

Suppose that one of the moves to the right is on the 2nd board. An L(3) move would be
met by a B(4) response by Duplicator, while an L(4) move would be met by a B(5) response,
in either case leading to a single board win for Duplicator. Thus, we can assume that the
two 2nd round moves to the right of the existing moves are on the 1st and 3rd boards – the
only two boards we need to consider to conclude this bit of the analysis. The element L(4)
must be selected from board 3. If L(2) is selected from board 1 then Duplicator wins by
selecting B(4): any 3rd round Spoiler move on B is parried on one of the two L boards,
while if Spoiler plays his 3rd round from L, Duplicator can maintain an isomorphism with
any move played on either the 1st or 3rd board. We are left to consider just the possibilities
that Spoiler plays L(3) or L(4) for his 2nd round move on board 1. Suppose he plays L(3).
Duplicator can then win by playing B(5): if Spoiler plays his 3rd move from B then B(4)
is met with L(2) on the 1st board and any other B move is easily parried on the 3rd L
board. On the other hand, if Spoiler plays his 3rd move from L then whatever he does
on the 3rd L board can be matched with an isomorphism-preserving move on B. In the
final case where Spoiler plays L(4) for his 2nd round move on the 1st L board, Duplicator
responds with B(5), guaranteeing an isomorphism. It follows that Duplicator can always
win the |B| = 5, |L| = 4, 3-round game.

To complete the argument we must show that Duplicator can also win when one or both
of |B| > 5 and |L| > 4. Let us start by considering the case of |B| > 5, |L| = 4. The analysis
for any initial Spoiler move where he plays either an end move or a next-to-end move is
precisely as earlier. Consider all other moves on B to be “middle” moves. Any such middle
move is parried just like in Figure 5, by playing L(1), L(2), L(3), and L(4) on the different
boards on the L side. The only new wrinkle in this analysis occurs in the case where Spoiler
first plays a middle move on B. We illustrate for |B| = 6 and where Spoiler’s first play is
B(3). He can now play B(5) and Duplicator must take new precautions because she cannot
win by playing on a single board. She can, however, play L(3) on the first L board, covering
further play on the right of B(3) by Spoiler, while also playing, say, L(3) on board 2, to
cover potential play by Spoiler on the left of B(3). The rest of the analysis is precisely as in
the smaller |B| case.

Finally, consider the case |B| > |L| > 4. If Spoiler plays an end element or next-to-end
element, Duplicator follows suit, playing, respectively, an end element or next-to-end element
from the same side on the opposite board, leading to an easy victory: if Spoiler plays on
both sides of the 1st round move in subsequent rounds he will clearly lose, while playing just
on one side reduces to a losing 2 round game for him. Similarly, if Spoiler plays a “middle”
element, Duplicator can respond playing any middle element from the opposite side. Again,
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if Spoiler plays on both sides of the 1st round move in subsequent rounds he will clearly
lose, but playing just on one side reduces to a losing 2 round game for him.

That completes the argument that Duplicator can win an MS game of 3 rounds whenever
the size of all boards is at least 4 and hence establishes the lemma.

At this point it is natural to suspect that one can build up upper bounds recursively in
a relatively simple manner. However, such an approach runs into unexpected difficulties, as
we describe in the next section.

5. Interlude: Why Naive Recursion cannot be used
to Build up Duplicator Winning Strategies in MS Games

It is worth pausing to understand why a simple idea to use recursion to build up Duplicator-
winning strategies, and hence upper bounds on g(r), fails. Via Lemma 4.2, we have
established the fact that g(3) ≤ 4 by showing that Duplicator wins 3-round MS games
if the sizes of both linear orders are 4 or larger. It is tempting to try to use this fact to
produce a Duplicator strategy for winning 4-round games using recursion. To understand
the problematic logic, it suffices to consider a 4-round game on boards of sizes 9 and 10. The
erroneous argument runs as follows. Suppose Spoiler plays L(5) on his 1st move. Duplicator
can then simply reply with the single move B(5) (so the erroneous reasoning goes), as in
Figure 6. Since there are five unplayed elements to the right of B(5) and four unplayed

Figure 6: A simple attempt to arrive at a Duplicator-winning strategy for the 10 versus 9
game. The first round moves are given in red.

elements to the right of L(5), Duplicator should now just be able to mimic Spoiler’s moves
at, or to the left of, B(5)/L(5) and otherwise play moves to the right of B(5)/L(5) as if it
were a 3-round, 5 versus 4 game, which we know is winnable by Duplicator. In fact, as we
will learn in Lemma 6.3, the 10 vs. 9 game is winnable by Spoiler. Hence this strategy does
not work.

The reason the strategy doesn’t work is that there is interaction between play on the
two sides and there are moves to the left of the 5 vs. 4 sub-game that are more powerful
for Spoiler (in the sense of breaking more to-that-point maintained partial isomorphisms)
than any moves available in the 5 vs. 4 game. This additional power is achieved by Spoiler
playing atop an already played move that is not part of the 5 vs. 4 sub-game at a critical
juncture.

Indeed, for his 2nd round move, Spoiler will select B(8), and as we know from the
analysis of the 5 vs. 4 games, this will require Duplicator to make copies of the L board and
play each of the possible moves to the right of L(5), as depicted in Figure 7. At this point
Spoiler will play on top of L(5) on the 1st L board (a move that wasn’t available in the 5 vs.
4 game), on L(6) on the 2nd L board, on L(9) on the 3rd L board, and on top of L(9) on the
4th L board. See Figure 8. Spoiler is going to play his 4th and final round moves from B,
but first let’s see what happens in response to the various Duplicator 3rd round moves (we
assume the oblivious strategy). The only move that would keep an isomorphism with the
1st L board is a play atop B(5) – breaking isomorphisms with any L board but the top one.
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Figure 7: The 2nd round plays of the simple Duplicator-winning strategy for the 10 versus
9 game. The first round moves are given in red, 2nd round moves in blue.

Figure 8: 3rd round plays (in green) that foils the simple Duplicator-winning strategy for
the 10 versus 9 game. The first round moves are given in red, 2nd round moves in
blue.

But then Spoiler will play B(6) on his 4th move on the same board, and Duplicator will
then not be able to keep the isomorphism going with the top L board. On the other hand,
to maintain an isomorphism with the 2nd L board, Duplicator must play either B(6) or
B(7), and in so doing, break an isomorphism with any other L board. However, Spoiler will
respond with B(7) if B(6) was played, or B(6) if B(7) was played, and Duplicator will have
no retort. To maintain an isomorphism with the 3rd L board, Duplicator must play B(9) or
B(10), again breaking the isomorphism with all other L boards, and Spoiler will respond by
playing B(10) if B(9) was played and vice versa. Finally, to keep an isomorphism going with
the bottom L board, Duplicator must play on top of B(8), again breaking the isomorphisms
with other L boards. But then Spoiler plays B(9) and Duplicator cannot respond.

Thus, trying to replicate the 5 vs. 4 strategy to the right of B(5)/L(5) and mimicking
play on top of or to the left of B(5)/L(5) does not work for Duplicator. When Spoiler played
on top of L(5) for one of his 3rd round moves, he was utilizing a move that was not available
to him in the 5 vs. 4 game. He did have the option to play on top of L(6) (which was labeled
L(1) in the 5 vs. 4 game) – but doing so would have duplicated the isomorphism type of the
bottom board. Playing on top of L(5) has stronger effect since if Duplicator is to maintain
isomorphisms with both the top and bottom boards, she cannot do it on a single board on
the left, she must make a copy and maintain an isomorphism with the top-right board in
one copy, and maintain an isomorphism with the bottom-right board in the other copy.

Before moving on, it is worth noting that it was not strictly necessary for Spoiler to
play on top of L(5) on the 1st L board on his 3rd move – any move on L(1)–L(4) would
have worked just as well. See Figure 9. For Duplicator to maintain an isomorphism with
the top L board she will have to move on B(1)–B(4), again breaking the isomorphisms with
any other L boards, and Spoiler can then pick B(6) on his 4th move, breaking any hope for
an isomorphism with the 1st board.

We remark that every winning strategy for Spoiler in the 10 vs. 9 game requires at
least one play-on-top move. We show this at the end of Appendix B, as summarized in
Observation B.1.
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Figure 9: A second example of 3rd round plays (in green) that foils the simple Duplicator-
winning strategy for the 10 versus 9 game. The first round moves are given in red,
2nd round moves in blue.

6. Lower Bounds on g(r)

The upshot of the prior section is that establishing tight bounds for g(r) requires careful
attention. Having established g(1) = 1 (Lemma 3.4), we begin our consideration of lower
bounds with g(2).

Lemma 6.1. g(2) ≥ 2

Proof. The sentence Φ2 = ∃x∃y(x < y) distinguishes linear orders of size 2 and above, from
the linear order of size 1.

Lemma 6.2. g(3) ≥ 4

Proof. The following sentence, with 3 quantifiers, distinguishes linear orders of size at least
4 from those of size at most 3:

Φ3 = ∀x∃y∃z(x < y < z ∨ y < z < x) (6.1)

Lemma 6.3. g(4) ≥ 10.

Proof. The following sentence with 4 quantifiers distinguishes linear orders of size at least
10 from those of size at most 9.

Φ4 = ∀x∃y∀z∃w(
x < z < y ! (w ̸= z ∧ x < w < y) ∧ (6.2)

x < y < z ! (w ̸= z ∧ x < y < w) ∧ (6.3)

y < z < x! (w ̸= z ∧ y < w < x) ∧ (6.4)

z < y < x! (w ̸= z ∧ w < y < x) ∧ (6.5)

z = x! (x < w < y ∨ y < w < x) ∧ (6.6)

z = y ! (x < y < w ∨ w < y < x)). (6.7)

This sentence captures the fact that “for every x there is a y with two or more elements
on each side of y, both of which are on the same side of x as y”, a fact that is true for linear
orders of size 10 or greater, but not for linear orders of size less than 10. For example, in a
linear order of size 9, the middle element will not have an element to either side of it having
these properties. More specifically, the first four implications (6.2)–(6.5) say that for every
x there is a y such that for any z ̸= x, y, with z on the same side of x as y, there is an
additional element besides z on the same side of y and also on the same side of x as y. The
last two implications (6.6)–(6.7) are critical and insure that there are elements (i) between x
and y and (ii) less than y if y < x, and greater than y if y > x.
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For an alternate, game-based proof of Lemma 6.3 see Appendix B.

With initial values g(1) = 1, g(2) ≥ 2 (Lemma 6.1), g(3) ≥ 4 (Lemma 6.2) and g(4) ≥ 10
(Lemma 6.3), we establish all remaining lower bounds via a game argument:

Theorem 6.4. For r > 4,

g(r) ≥

{
2g(r − 1) if r is even,

2g(r − 1) + 1 if r is odd.
(6.8)

Proof. Let us establish (6.8) first for odd r. Here we need to provide a Spoiler-winning
strategy for a game with arbitrary linear orders of sizes at least 2g(r − 1) + 1 on one side
and arbitrary linear orders of sizes at most 2g(r − 1) on the other side. For simplicity, we
will show the strategy for the game in which we have a single linear order of size at least
2g(r − 1) + 1 on one side and a single linear order of size at most 2g(r − 1) on the other
side. The strategy for the case of multiple linear orders on each side is exactly the same, as
we shall see. Analogous remarks will hold for the even r case.

We start with the special, though pivotal, case where we have linear orders of size
2g(r − 1) + 1 and 2g(r − 1), as in Figure 10. We describe a winning strategy for Spoiler.

Figure 10: The odd r case: linear orders of sizes 2g(r − 1) + 1 and 2g(r − 1). Spoiler plays
first on B (the left hand side). First round moves are indicated in red. Duplicator
responds by playing every possible move. Five exemplary boards with different
moves played on each are shown.

Spoiler begins by playing the middle element on B, i.e. B(g(r− 1)+1). Duplicator responds
by playing every possible move leaving short sides that all have fewer than g(r− 1) elements.
Spoiler next makes his 2nd round move on each board of L on the short sides, while playing
on top of any end moves (moves with empty short sides), such as those shown on the bottom
two boards in Figure 10. With the exception of the two end moves, which we will handle
independently, Spoiler is going to play all subsequent moves entirely on the short sides of
the boards of L and the corresponding sides of the boards of B – in other words if the short
side of L is on the left, he will play on the left side of B, and vice versa – in accordance
with the known Spoiler-winning strategy on boards of size g(r − 1) or greater vs. boards of
size less than g(r − 1).

In order to see how he is able to do this, we need to use a strong inductive assumption,
namely that in games of r rounds, when r is even, and there are linear orders of sizes g(r)
or greater on one side, and less than g(r) on the other side, Spoiler can then always win
by playing first on the L side. The game-based proof of Lemma 6.3 demonstrated such
a strategy for the case r = 4, and we will have to keep this commitment when we cover
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additional even r cases next. For now, though, we are assuming that r is odd, so r − 1 is
even and we have such a strategy.

Duplicator will respond with the oblivious strategy, making many copies of B and
playing all possible moves. From this point forward, the boards on both sides that have
had their 2nd moves played to the right of the 1st moves conceptually constitute one game,
and the boards on both sides that have had their 2nd moves played to the left of the 1st
moves conceptually constitute a second game. The conceptual game played entirely on the
left side of the boards can be won by Spoiler as well as the conceptual game played on the
right, both times using the strong induction hypotheses. Note that since both games have
the same larger size boards, Spoiler can win by picking the same side to play on (L or B)
on all boards in each of the conceptual games, in each subsequent round, and hence the
two conceptual games can be played round-by-round in tandem. In so doing, all partial
isomorphisms are broken and so Spoiler wins the combined game.

However, we have not yet described how to take care of the case where Duplicator played
end moves on L in the 1st round and Spoiler reciprocated by playing on top of these end
moves. In order to maintain an isomorphism with either of these boards Duplicator will
have to play on top of the 1st move on B – which will break any potential isomorphism
with any other L boards. Now we use a key observation from the Spoiler-winning strategy
in the 10+ vs. 9- game that established g(4) ≥ 10 (see the proof of Lemma 6.3): in the
next-to-last round Spoiler played on L, and in the last round he played on B. Note that the
r-round Spoiler strategy recursively uses an (r − 1)-round Spoiler strategy, eventually using
the 4-round Spoiler strategy since the base case of this lemma is r = 5, which is defined in
terms of r = 4. Thus, for boards that remain isomorphic long enough, Spoiler will play the
last two rounds consecutively on L and then B.

In the next-to-last round, in which Spoiler plays on L, Spoiler will select any element
to the right of L(1) on the boards where L(1) was played as a first move, and Spoiler will
select any element to the left of L(2g(r − 1)) on the boards where L(2g(r − 1)) was played
as a 1st move. As a result, to maintain partial isomorphisms with the boards in which,
respectively, L(1) and L(2g(r − 1)) were played, Duplicator will have to play so that the B
boards that remain isomorphic with the board in which L(1) was played are not isomorphic
to the boards in which L(2g(r − 1)) was played, and vice versa. Thus, in the final round,
Spoiler will play to the right of the middle element on the B boards that maintained a
partial isomorphism with the boards where L(2g(r − 1)) was played first, thus killing all
surviving partial isomorphisms, and will play to the left of the middle element on the B
boards that maintained a partial isomorphism with boards where L(1) was played first,
killing all of its remaining partial isomorphisms.

For the more general case where |B| > 2g(r − 1) + 1, Spoiler simply picks any element
having at least g(r − 1) elements on each side of his 1st move and the play proceeds via the
same induction. Analogously, if |L| < 2g(r − 1) it still follows that Duplicator’s 1st round
moves leave a short side of size less than g(r− 1), and hence the argument remains the same
with respect to such smaller size L.

In the case where we start with multiple boards {Bi}, {Lj} of sizes |Bi| ≥ 2g(r − 1) + 1
and |Lj | ≤ 2g(r − 1), Spoiler starts by playing on each board on the {Bi} side exactly as
if there were just that one board there, and responds in turn, with the same alternating
strategy as we have outlined in the single board case. Instead of making copies of just one
board on her first round moves, Duplicator will make copies of all boards and make every
possible move. Spoiler will then respond as before, playing on the short sides (or on top of
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end elements if necessary), and the argument recurses as in the case where we started with
single boards.

Next let us tackle the case where r is even. We begin as usual with the base case of
boards of sizes 2g(r − 1) and 2g(r − 1)− 1. See Figure 11.

Figure 11: The even r case: linear orders of sizes 2g(r − 1) and 2g(r − 1) − 1. Spoiler
plays first on L (the right hand side). First round moves are indicated in red.
Duplicator responds by playing every possible move. Five exemplary boards with
different moves played on each are shown.

As Spoiler, we must keep our inductive commitment to play first on L and so play the
middle element, as indicated in the figure. Now any move by Duplicator on B leaves a long
side of size at least g(r − 1) versus the same side (left or right of the 1st move) on L, of size
g(r − 1)− 1. Thus we adapt the argument from the odd r case to this case, but where we
play on the long side now rather than on the short side. The strong induction hypothesis we
need this time is that smaller odd r cases can be won by playing the 1st round from B –
but we know this to be the case for r = 5, the very first case covered by this theorem, and
all subsequent cases of odd r by how we argued the odd r case. The case of boards of sizes
greater than 2g(r − 1) and less than 2g(r − 1) − 1 is handled analogously, and the same
remarks about multiple boards versus multiple boards to start that we made for the odd r
case apply here as well. The theorem therefore follows.

For r > 4, the sentences associated with the strategies described in the proof of the
above theorem say, respectively, for r even, that for every x there is a linear order of size at
least g(r − 1) either to the left or right of x, and for r odd, that there is an element x with
a linear order of size at least g(r − 1) both to the left and right of x.

We give a sketch of how this works for r = 5 and r = 6. To get started we rewrite
the previous expression for Φ4, given by (6.2) – (6.7), replacing the variables x, y, z, w,
respectively with x2, x3, x4, x5:

Φ4 = ∀x2∃x3∀x4∃x5(
x2 < x4 < x3 ! (x5 ̸= x4 ∧ x2 < x5 < x3) ∧ (6.9)

x2 < x3 < x4 ! (x5 ̸= x4 ∧ x2 < x3 < x5) ∧ (6.10)

x3 < x4 < x2 ! (x5 ̸= x4 ∧ x3 < x5 < x2) ∧ (6.11)

x4 < x3 < x2 ! (x5 ̸= x4 ∧ x5 < x3 < x2) ∧ (6.12)

x4 = x2 ! (x2 < x5 < x3 ∨ x3 < x5 < x2) ∧ (6.13)

x4 = x3 ! (x2 < x3 < x5 ∨ x5 < x3 < x2)). (6.14)

With this translation of variable names, the sentence says that “for every x2 there is a x3
with two or more elements on each side of x3, both of which are on the same side of x2 as
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x3”. More specifically, as noted before, the first four implications (6.9)–(6.12) say that for
every x2 there is an x3 such that for any x4 ̸= x2, x3, with x4 on the same side of x2 as x3,
there is an additional element besides x4 on the same side of x3 and also on the same side of
x2 as x3. The last two implications (6.13)–(6.14) insure that there are elements (i) between
x2 and x3 and (ii) less than x3 if x3 < x2, and greater than x3 if x3 > x2.

To this we now add that there exists an element x1 such that there is a linear order
of size 10 both to its right and its left, in other words there exists an element x1 such
that the above sentence is true for elements less than x1 and for elements greater than x1,
specifically:

Φ5 = ∃x1∀x2∃x3∀x4∃x5
(

x1 < x2 !
(
x1 < x2 < x4 < x3 ! (x5 ̸= x4 ∧ x1 < x2 < x5 < x3) ∧

x1 < x2 < x3 < x4 ! (x5 ̸= x4 ∧ x1 < x2 < x3 < x5) ∧
x1 < x3 < x4 < x2 ! (x5 ̸= x4 ∧ x1 < x3 < x5 < x2) ∧
x1 < x4 < x3 < x2 ! (x5 ̸= x4 ∧ x1 < x5 < x3 < x2) ∧
x4 = x2 ! (x1 < x2 < x5 < x3 ∨ x1 < x3 < x5 < x2) ∧

x4 = x3 ! (x1 < x2 < x3 < x5 ∨ x1 < x5 < x3 < x2)
)
∧

x2 < x1 !
(
x2 < x4 < x3 < x1 ! (x5 ̸= x4 ∧ x2 < x5 < x3 < x1) ∧

x2 < x3 < x4 < x1 ! (x5 ̸= x4 ∧ x2 < x3 < x5 < x1) ∧
x3 < x4 < x2 < x1 ! (x5 ̸= x4 ∧ x3 < x5 < x2 < x1) ∧
x4 < x3 < x2 < x1 ! (x5 ̸= x4 ∧ x5 < x3 < x2 < x1) ∧
x4 = x2 ! (x2 < x5 < x3 < x1 ∨ x3 < x5 < x2 < x1) ∧

x4 = x3 ! (x2 < x3 < x5 < x1 ∨ x5 < x3 < x2 < x1)
)
∧

x1 = x2 ! (x3 < x1 ∧ x1 < x5)
)
.

Then Φ5 distinguishes linear orders of size 21 and above from those of size less than 21.
Next, to form the expression for Φ6, which distinguishes linear orders of size 42 and

above from those of size less than 42, we say that for every element x0 there is either a linear
order of size 21 to the left or right of x0. The construction is analogous:

Φ6 = ∀x0∃x1∀x2∃x3∀x4∃x5

(

x0 < x1 !

(
x0 < x1 < x2 !

(
x0 < x1 < x2 < x4 < x3 ! (x5 ̸= x4 ∧ x0 < x1 < x2 < x5 < x3) ∧

x0 < x1 < x2 < x3 < x4 ! (x5 ̸= x4 ∧ x0 < x1 < x2 < x3 < x5) ∧
x0 < x1 < x3 < x4 < x2 ! (x5 ̸= x4 ∧ x0 < x1 < x3 < x5 < x2) ∧
x0 < x1 < x4 < x3 < x2 ! (x5 ̸= x4 ∧ x0 < x1 < x5 < x3 < x2) ∧
x4 = x2 ! (x0 < x1 < x2 < x5 < x3 ∨ x0 < x1 < x3 < x5 < x2) ∧

x4 = x3 ! (x0 < x1 < x2 < x3 < x5 ∨ x0 < x1 < x5 < x3 < x2)
)
∧
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x0 < x2 < x1 !
(
x0 < x2 < x4 < x3 < x1 ! (x5 ̸= x4 ∧ x0 < x2 < x5 < x3 < x1) ∧

x0 < x2 < x3 < x4 < x1 ! (x5 ̸= x4 ∧ x0 < x2 < x3 < x5 < x1) ∧
x0 < x3 < x4 < x2 < x1 ! (x5 ̸= x4 ∧ x0 < x3 < x5 < x2 < x1) ∧
x0 < x4 < x3 < x2 < x1 ! (x5 ̸= x4 ∧ x0 < x5 < x3 < x2 < x1) ∧
x4 = x2 ! (x0 < x2 < x5 < x3 < x1 ∨ x0 < x3 < x5 < x2 < x1) ∧

x4 = x3 ! (x0 < x2 < x3 < x5 < x1 ∨ x0 < x5 < x3 < x2 < x1)
)
∧

(x0 < x1 ∧ x1 = x2) ! (x0 < x3 < x1 ∧ x0 < x1 < x5)

)
∧

x1 < x0 !

(
x1 < x2 < x0 !

(
x1 < x2 < x4 < x3 < x0 ! (x5 ̸= x4 ∧ x1 < x2 < x5 < x3 < x0) ∧

x1 < x2 < x3 < x4 < x0 ! (x5 ̸= x4 ∧ x1 < x2 < x3 < x5 < x0) ∧
x1 < x3 < x4 < x2 < x0 ! (x5 ̸= x4 ∧ x1 < x3 < x5 < x2 < x0) ∧
x1 < x4 < x3 < x2 < x0 ! (x5 ̸= x4 ∧ x1 < x5 < x3 < x2 < x0) ∧
x4 = x2 ! (x1 < x2 < x5 < x3 < x0 ∨ x1 < x3 < x5 < x2 < x0) ∧

x4 = x3 ! (x1 < x2 < x3 < x5 < x0 ∨ x1 < x5 < x3 < x2 < x0)
)
∧

x2 < x1 < x0 !
(
x2 < x4 < x3 < x1 < x0 ! (x5 ̸= x4x2 < x5 < x3 < x1 < x0) ∧

x2 < x3 < x4 < x1 < x0 ! (x5 ̸= x4 ∧ x2 < x3 < x5 < x1 < x0) ∧
x3 < x4 < x2 < x1 < x0 ! (x5 ̸= x4 ∧ x3 < x5 < x2 < x1 < x0) ∧
x4 < x3 < x2 < x1 < x0 ! (x5 ̸= x4 ∧ x5 < x3 < x2 < x1 < x0) ∧
x4 = x2 ! x0 < (x2 < x5 < x3 < x1 ∨ x3 < x5 < x2 < x1 < x0) ∧

x4 = x3 ! x0 < (x2 < x3 < x5 < x1 ∨ x5 < x3 < x2 < x1 < x0)
)
∧

(x1 = x2 ∧ x1 < x0) ! (x3 < x1 < x0 ∧ x1 < x5 < x0)

)
∧

x0 = x1 ! x3 ̸= x0

)
.

It is worth noting that we could have begun this process at g(4). Starting with the
expression for Φ3, given by (6.1), establishing g(3) ≥ 4 with prenex signature ∀∃∃ we could
have “relativized” Φ3 to form an expression with prenex signature ∃∀∃∃ saying that there
exists an element with a linear order of size at least 4 both to the left and right. This would
have established that g(4) ≥ 9. From there we could have obtained an expression with
prenex signature ∀∃∀∃∃ establishing that g(5) ≥ 18, and so on, at each juncture obtaining
slightly worse bounds than we have already obtained. The magic is that a stronger lower
bound for g(4) can be expressed with the sentence given by (6.2) – (6.7) [alternatively, 6.9) –
(6.14)].

7. Games with Atoms: A different Approach to Obtain Upper Bounds on g(r)

Let us define a new type of game. These games are similar to the MS games but with a
twist. They will make it harder for Duplicator to win any particular game of r rounds. Since
Duplicator-winning strategies for a game of r rounds provide upper bounds on g(r), we will
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obtain upper bounds that are potentially weaker, but will later match the lower bounds for
r ≥ 4, proving the upper bounds in the range r ≥ 4 to be tight. The reason for considering
these games is that they will allow us to recurse, getting around the issue we got stuck on in
Section 5.

In our new game of r rounds, we again have sets A and B of structures. However, each
board on each of the sides, in addition to containing a structure S, contains a collection
of unrelated, but labeled elements, {a1, ..., as}, where s can be as large as Spoiler wants.
We shall refer to the collection of unrelated labeled elements as atoms. By a slight abuse
of notation, we will treat atoms as if they are constant symbols, so that they can appear
in sentences. However, these symbols will not appear in the sentences guaranteed by
Theorems 1.2 and Theorem 1.3. These atoms are both unrelated to elements of the structure
and unrelated to each other. On their respective turns, Spoiler and Duplicator play, as in
the MS games, on all boards on their chosen side for that turn, picking an element from
that board, choosing either an element from the structure, or from the set of atoms. If atom
ak is selected by Spoiler on a given board, in a given round j, the only way Duplicator can
maintain a partial isomorphism between that board and an opposite board is to select ak in
round j on the opposite board. When Duplicator makes copies of boards, the atoms are
copied as well as the structures labeled with the moves made thus far.

In our figures, rather than showing all the atoms, and distinguishing those that are
selected, we show only the atoms that have thus far been selected for a given board adjacent
to the structures, with appropriate labeling. Let us refer to these new games as MS games
with atoms.

Observation 7.1. MS games with atoms are equivalent to MS games with structures that
are a union of the prior structures and the set of atoms. Hence, by Theorem 1.2, we have
that Spoiler wins r-round MS games with atoms on two sets of structures iff there exists
a sentence Φ with up to r quantifiers that distinguishes the two sets of structures. The
sentence can contain constants and utilize an additional unary relation A(x), which is true
iff x is an atom.

Since a Spoiler winning strategy for a MS game is still a winning strategy for the
analogous game with atoms (where atoms are never selected by Spoiler) we have:

Lemma 7.2. If Spoiler can win an r-round MS game on a given pair of sets of structures
then he can also win an r-round MS game with atoms on the same pair of sets of structures.

Corollary 7.3. If Duplicator can win an r-round MS game with atoms on a given pair of
sets of structures, then she can also win an r-round MS game on the same pair of sets of
structures.

To understand the additional power provided to Spoiler by the atoms, let us revisit
how Duplicator survives in one critical juncture of the 3-round, 5 versus 4 MS game from
Lemma 4.2. Figure 12 shows the boards after two rounds in the critical sequence. In the
1st round, Spoiler played B(3) and Duplicator played all possible moves on L. We consider
the case where Spoiler then replies with 2nd round moves on L as indicated in blue in the
figure, and in particular playing on top of L(1) on the board labeled L1 and on top of L(4)
on the board labeled L4. Duplicator then replies with all possible responses on B (again in
blue). To the left of each B board we indicate which L boards the board has managed to
keep an isomorphism with.
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Figure 12: MS game play on B versus L. 1st round moves are in Red, 2nd round moves in
blue.

The crux of the matter is that because the third B board is consistent with both L1

and L4, Spoiler cannot break both isomorphisms in the one remaining move.
With atoms, however, investing a turn to play an atom can usefully separate these two

L boards. Figure 13 illustrates Spoiler changing his second move on board L4 from L(4) to

Figure 13: MS game play with atoms.

a1. Duplicator now has an additional potentially viable 2nd round move, playing the newly
played atom, a1, as indicated in the additional board added on the left. However, note in the
left hand column of the figure how no board is any longer simultaneously partially isomorphic
with boards L1 and L4. Spoiler can now break each of the isolated isomorphisms by playing
on B, in order, from top to bottom, as follows: B(2), B(1), B(2), B(5), B(4), B(4).

The following follows from the discussion above and Lemma 4.2.

Proposition 7.4. While Duplicator can always win 3-round MS games on linear orders of
sizes 5 vs. 4, Spoiler can always win 3-round MS games with atoms on linear orders of these
sizes.

We are now going to establish Duplicator-winning strategies for MS games with atoms,
for various numbers of rounds. By Lemma 7.2, Duplicator has a harder time winning these
games than standard MS games and so these strategies will initially provide weaker upper
bounds than the upper bounds obtained by providing Duplicator-winning strategies in MS
games.
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Definition 7.5. Let g′(r) denote the largest k such that Spoiler wins every r-round MS
game with atoms on two sets B and L of linear orders where each B ∈ B is of size at least k
and each L ∈ L is of size less than k.

To see that g′(r) is well-defined, note that if Duplicator can win an r-round E-F game
on two linear orders B,L then she can win an r-round MS game, as well as an r-round MS
game with atoms, on sets B,L of structures with B ∈ B and L ∈ L – this is the case because
she can focus on the one pair of structures, L and B, when playing the MS game, and
further, because Spoiler gains no advantage from playing atoms when play is constrained to
just a pair of structures. Hence g′(r) ≤ f(r). In our considerations of g′ we will exclusively
be focusing on game-based approaches. We will, further, just be concerned with establishing
upper bounds on g′(r), and in so doing will always be taking B and L to be singletons,
B = {B},L = {L}.

The following is an immediate consequence of Lemma 7.2.

Lemma 7.6. For all values of r, we have g(r) ≤ g′(r).

The following lemma describes why it is possible to recursively prove upper bounds on
g′ (and hence g) in MS games with atoms and get around the issue described in Section 5.

Lemma 7.7. Reduction Lemma: Suppose we have an r-round MS game with atoms on
linear orders of sizes K and K ′. For some integer h, with 1 ≤ h ≤ min(K,K ′), suppose
there are boards on the L and B sides in which first moves of L(h) and B(h) have been
played, or in which moves of L(K − h + 1) and B(K ′ − h + 1) have been played. Then
Duplicator wins the K vs. K ′ game on those boards iff she wins the (r − 1)-round MS game
with atoms on linear orders of sizes K − h and K ′ − h.

Figure 14 illustrates the reduction of a 3-round, 6 versus 5 MS game with atoms, to a
2-round, 3 versus 2 MS game with atoms, per the conclusion.

Figure 14: An illustration of the reduction in Lemma 7.7 where a 3-round, 6 versus 5 MS
game with atoms gets reduced to a 2-round, 3 versus 2 MS game with atoms.

Proof. Without loss of generality assume the 1st round moves are L(h) and B(h). Duplicator
now makes a pact with Spoiler, saying that the only way she will maintain an isomorphism
with moves on the left hand side of L(h)/B(h) is by mirroring (in other words by responding
to L(i) with B(i) when 1 ≤ i ≤ h, and vice versa). She tells Spoiler that if ever such a move
is not mirrored, Spoiler can count it as a break in the partial isomorphism between the
two boards. By agreeing to these stricter isomorphism rules, Duplicator makes it harder
for herself to maintain partial isomorphisms. However, the effect is that we can remove
the elements B(1), ..., B(h) and L(1), ..., L(h) and set aside the first h atoms on each side,
a1, ..., ah, only to be played as follows: if Spoiler ever would have wanted to play B(i) or
L(i), with 1 ≤ i ≤ h, on a given board, he can instead play ai with the same effect. This
reduces the game to an (r − 1)-round MS game with atoms on linear orders of size K − h
and K ′−h with h additional atoms. Since in the definition of MS games with atoms, Spoiler
already has as many atoms as he wants, the additional h atoms have no effect on the game.
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We are left with just playing an (r − 1)-round MS game with atoms on linear orders of size
K − h and K ′ − h and if Duplicator can win such a game, she can win the original game.

On the other hand, if Duplicator does not have a winning strategy in the K − h vs.
K ′ − h MS game with atoms, then Spoiler has a winning strategy and can force play to be
entirely on the side of the initial move with this many unplayed elements, and thus win.
The lemma follows.

Lemma 7.8. Laddering Up Lemma for MS Games and MS Games with Atoms:
Suppose Duplicator can win MS games (respectively MS games with atoms) on singleton sets
of sizes K,K + 1 for all K ≥ N . Then Duplicator can also win MS games (respectively MS
games with atoms) on singleton sets of sizes K,K ′ whenever K ≥ N and K ′ ≥ N .

Proof. Suppose both K ≥ N and K ′ ≥ N . Let l.o.(K) denote the linear order of size K.
Then we have that l.o.(K) ≡r l.o.(K + 1) ≡r · · · ≡r l.o.(K ′). By repeated application of
Lemma 3.2 the lemma follows for MS games.

The same argument works for MS games with atoms by replacing each linear order with
the union of the linear order and the corresponding atoms, whereby MS games with atoms
reduce to MS games, per Observation 7.1.

Lemma 7.9. Duplicator can win 2-round MS games with atoms on linear orders of sizes 2
or greater and hence g′(2) ≤ 2.

Proof. Immediate from Lemma 4.1 coupled with the observation that it never helps Spoiler
to play an atom in the first or last round.

Lemma 7.10. Duplicator can win 3-round MS games with atoms on linear orders of sizes 5
or greater and hence g′(3) ≤ 5.

Proof. Suppose we have linear orders of sizes K,K + 1 with K ≥ 5. Any Spoiler 1st round
move leaves a short side of no more than ⌊K2 ⌋ unplayed elements on that side. Duplicator
can then reply with a move leaving an identical short side. Without loss of generality assume
this common short side is on the left. Then to the right of the played moves, each board
has at least K − ⌊K2 ⌋ − 1 ≥ 2 unplayed elements, and by virtue of the fact that g′(2) ≤ 2
(Lemma 7.9), Lemma 7.7 guarantees that Duplicator has a winning strategy. The Laddering
Up Lemma 7.8 then guarantees that Duplicator has a winning strategy for any boards of
sizes K ≥ 5 and K ′ ≥ 5. The lemma follows.

Although this section is concerned with establishing upper bounds on g, we shall actually
need to establish precise values for g′ in order to get the upper bounds on g to go through.
The discussion we gave to show that Spoiler can win a 5 vs. 4 3-round MS game with atoms
(Proposition 7.4) can easily be extended to show that Spoiler can win such a 3-round game
on linear orders of sizes 5 or greater versus 4 or smaller. Hence we have that g′(3) ≥ 5, so
that together with the prior lemma we have:

Lemma 7.11. g′(3) = 5.

Any Spoiler-winning strategy in an ordinary MS game of r rounds corresponds to a
sentence that is valid for B but not for L with r quantifiers. If Spoiler’s strategy starts on
B then the corresponding sentence starts with ∃, while if Spoiler’s strategy starts on L, the
sentence starts with ∀. If we force Spoiler to play first on L, then we are giving Duplicator
an advantage so that she may be able to win games that she would not be able to win
otherwise.
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Definition 7.12. Let g′∀(r) denote the smallest k such that Duplicator can win MS games
with atoms on a pair of linear orders, each of size k or greater, if Spoiler is constrained to
play his first move on L.

Lemma 7.13. If Spoiler is constrained to play his first move on L, Duplicator can win
r-round MS games with atoms on linear orders of sizes 2g′(r − 1) or greater. Hence,
g′∀(r) ≤ 2g′(r − 1).

Proof. Consider an r-round, 2g′(r − 1) + 1 vs. 2g′(r − 1) MS game with atoms. Refer to
Figure 15. If Spoiler is constrained to play on the L side, his play will necessarily leave a

Figure 15: The r-round, 2g′(r− 1) + 1 vs. 2g′(r− 1) MS game with atoms. Only one board
on each side are shown.

short side of size at most g′(r − 1) − 1, which can be matched by a move that leaves the
same short side on B, and with long sides that are each of size at least g′(r − 1). Hence the
game is winnable by Duplicator via the Reduction Lemma (Lemma 7.7). For r round games
on boards of sizes K + 1 vs. K with K > 2g′(r − 1) again the short sides can be matched
up, leaving long sides of sizes still at least g′(r − 1). The lemma follows by the Laddering
Up Lemma (Lemma 7.8).

Theorem 7.14. For r ≥ 2,

g′(r) =

{
2g′(r − 1) if r is even,

2g′(r − 1) + 1 if r is odd.
(7.1)

Moreover, Duplicator can win r-round MS games with atoms on linear orders of sizes
2g′(r − 1) or greater if r is even, and on linear orders of sizes 2g′(r − 1) + 1 or greater if r
is odd.

Proof. We establish the equality asserted in the theorem via first establishing that the ≥
inequality holds, and then establishing that the ≤ inequality holds. Since for all r ≥ 1
we have g′(r) ≥ g(r) (lemma 7.6), the ≥ portion of the theorem follows from the lemmas
establishing that g(1) = 1, g(2) ≥ 2, g′(3) = 5 and g(4) ≥ 10, together with Theorem 6.4.

Now let us establish that the ≤ inequality holds. It is trivial to verify that g′(1) = 1,
while g′(2) ≤ 2 is Lemma 7.9 and g′(3) = 5 is Lemma 7.11. Hence, we have already
established the ≤ part of the theorem for r = 2 and r = 3. For larger values of r we proceed
inductively, assuming the truth of the theorem for values up to r − 1 and proving it for the
value r. The inductive step for the case of odd r is easy, so let’s dispose of that case first –
it is essentially the same argument we gave to establish g′(3) ≤ 5 in Lemma 7.10. Suppose
we have linear orders of sizes K,K + 1 with K ≥ 2g′(r − 1) + 1. Any Spoiler 1st round
move leaves a short side of no more than ⌊K2 ⌋ unplayed elements on that side. Duplicator
can then reply with a move leaving an identical short side. Without loss of generality
assume this common short side is on the left. Then, to the right of the played moves, each
board has at least K − ⌊K2 ⌋ − 1 unplayed elements. But, using the inductive assumption,
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K − ⌊K2 ⌋ − 1 ≥ K − K
2 − 1 ≥ (g′(r − 1) + 1

2)− 1; hence K − ⌊K2 ⌋ − 1 ≥ g′(r − 1)− 1
2 . Since

both K − ⌊K2 ⌋ − 1 and g′(r− 1) are integers, it follows that K − ⌊K2 ⌋ − 1 ≥ g′(r− 1). Thus,
each board has at least g′(r − 1) unplayed elements on their long sides. The Reduction
Lemma (Lemma 7.7) in conjunction with the induction hypothesis therefore guarantees that
Duplicator has a winning strategy. The Laddering Up Lemma (Lemma 7.8) then guarantees
that Duplicator has a winning strategy for any boards of sizes K,K ′ ≥ 2g′(r − 1) + 1.

Next consider the case of even r. Suppose first that we have linear orders of sizes
2g′(r − 1) and 2g′(r − 1) + 1. Let us first dispose of any first move by Spoiler other than
B(g′(r − 1) + 1), the middle element on the B side. Any move other than this one on the
B side can be responded to with a move on L that matches the short side while leaving at
least g′(r − 1) unplayed elements on both long sides, and therefore, again by the Reduction
Lemma and induction, yielding a winning strategy for Duplicator. On the other hand, any
Spoiler 1st round move on L is analogously met by matching the short side with a move
on B, transposing to the just-prior analysis. Thus we may assume that Spoiler plays the
element B(g′(r− 1) + 1). In response, Duplicator uses two boards and plays L(g′(r− 1)) on
one of the boards and L(g′(r − 1) + 1) on the other one. See Figure 16.

Figure 16: A 2g′(r− 1) + 1 vs. 2g′(r− 1) game where Spoiler plays first on B(g′(r− 1) + 1)
and Duplicator responds by playing L(g′(r−1)) on one board and L(g′(r−1)+1)
on another.

Consider the possible Spoiler 2nd round responses. Suppose Spoiler plays on B. A
play on one of the left-hand unplayed g′(r − 1) elements, i.e., on some B(i) such that
1 ≤ i ≤ g′(r − 1) will be met with a play of L(i) on the 2nd L board. As we argued in the
proof of the Reduction Lemma, we can now regard the remaining g′(r − 1)− 1 unplayed
elements to the left of the 1st round selections on the bottom L board and the B boards
as additional atoms and just consider the game on the right side of these boards, which
is now an r − 2 round game on boards of sizes g′(r − 1) and g′(r − 1) − 1. Inductively it
is easy to see that g′(r − 1)− 1 > g′(r − 2) and so such a sequence leads inductively to a
Duplicator win. A 2nd round Spoiler play on B, on one of the right hand set of unplayed
g′(r− 1) elements, is handled with a symmetrical argument. Further, playing an atom on B
is met by playing the same atom on both L boards (in fact playing on just one board and
ignoring the other is sufficient), and again leads to an inductive win for Duplicator by virtue
of the fact that g′(r − 1)− 1 > g′(r − 2).

Thus we may assume that Spoiler makes his 2nd round moves on L. A play on the long
side of either board is met with a symmetrical play by Duplicator on B, transposing to our
prior analysis for when Spoiler played his 2nd move on B. Playing an atom on L is met
with the same atom being played on B, again with a transposition. Thus we may suppose
that Spoiler plays on the short side of both L boards, and, in particular, plays on the left on
the top L board. Now the left hand (short side) of the top board is of size g′(r − 1)− 1 and
the left hand side of B is of size g′(r − 1). Further, we are assuming that r is even, and so
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r − 1 is odd and hence by (7.1) we have

g′(r − 1) = 2g′(r − 2) + 1. (7.2)

Since we’ve reduced the analysis to Spoiler next playing on the L side of this (r − 1)-round,
g′(r − 1) vs. g′(r − 1)− 1 game, Lemma 7.13 applies and says that g′∀(r − 1) ≤ 2g′(r − 2).
Taken together with (7.2), we have that g′∀(r − 1) ≤ g′(r − 1)− 1.

Thus, we are left with boards of sizes g′(r − 1) and g′(r − 1)− 1, both of which are at
least of the size of g′∀(r − 1). Hence, by the definition of g′∀ (Definition 7.12), Duplicator has
a winning strategy, over the remaining r − 1 rounds, playing just on the left hand sides of
these two boards and hence, by the Reduction Lemma, has a winning strategy playing on
the entire board. Thus Duplicator has a winning strategy in the original r-round game for
boards of sizes 2g′(r − 1) and 2g′(r − 1) + 1.

For K,K+1 with K > 2g′(r−1) the argument is easier since Duplicator can just mimic
the short side play of any 1st round Spoiler play and immediately apply the Reduction
Lemma. As usual, the argument is completed by applying the Laddering Up Lemma.

We have therefore established the following upper bounds:

Corollary 7.15. We have g(2) ≤ 2, g(3) ≤ 4, g(4) ≤ 10, and for r > 4,

g(r) ≤

{
2g(r − 1) if r is even,

2g(r − 1) + 1 if r is odd.

Moreover, Duplicator can win r-round MS games on linear orders of sizes that are at least
as large as these upper bound (right hand side) values in all the inequalities.

Proof. The inequalities g(2) ≤ 2, g(3) ≤ 4 are Lemmas 4.1 and 4.2. The chain of inequalities
g(4) ≤ g′(4) ≤ 2g′(3) ≤ 10, follows from Lemma 7.6, Lemma 7.10 and Theorem 7.14. The
inductively defined inequality for r > 4 follows by Lemma 7.6 and Theorem 7.14. Finally,
the upper bounds associated with all these lemmas and Theorem 7.14 were established and
stated by observing that Duplicator could win r round games when the two linear orders
considered were at least as large as the upper bounds. The same therefore follows for this
corollary.

8. Tight Bounds on g(r) and Final Theorems

At last, we pull together the identical upper and lower bounds we have obtained for g(r),
to yield Theorem 1.6. Further, since the upper and lower bounds on g(r) turned out to be
tight, the very last paragraph at the end of Section 6 immediately implies the following:

Theorem 8.1. For each r ≥ 1 there is a sentence with r quantifiers distinguishing linear
orders of size g(r) or greater from linear orders of size less than g(r). The prenex signatures
of such sentences are as follows:

r = 1 : ∃
r = 2 : ∃∃
r = 3 : ∀∃∃

r ≥ 4, r even : ∀∃ · · · ∀∃
r ≥ 4, r odd : ∃∀∃ · · · ∀∃.
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Here the · · · signifies a sequence of repeating quantifier alternations ∀∃ of the length needed
to give rise to r quantifiers in total.

Corollary 8.2. Let A be any collection of linear orders, each of size at least g(r), and B
any collection of linear orders, each of size less than g(r). The Spoiler can win an r-round
MS game on A and B.

Although we have a completely specified g(r), we have not completely answered the
question of the minimum number of quantifiers needed to distinguish one linear order, B,
from another, L, in one special case. Specifically, if g(r − 1) ≤ |L| < |B| < g(r) for some
value of r, we know there is no sentence with r − 1 quantifiers that distinguishes B from L,
but nothing more. The following lemma closes this gap.

Lemma 8.3. Given two linear orders B,L, with |L| < |B| < g(r) for some r > 0 then there
is a sentence with r quantifiers that distinguishes B from L.

Proof. If there is a sentence with r − 1 quantifiers that distinguishes B from L, there is
obviously a sentence with r quantifiers that does the same. Hence, we only need to verify
the lemma for the case g(r − 1) ≤ |L| < |B| < g(r). This is the range of values of |L| and
|B| for which we have not resolved how many quantifiers suffice to separate B from L.

We will demonstrate the conclusion of the lemma using a combination of explicit
sentences and Spoiler winning strategies. It is not possible to have |L| < |B| < g(1), so
that case is handled. For g(2) the only possibility is |L| = 0, |B| = 1, which is covered by
g(1) = 1. Next, for g(3), the cases covered by the lemma are those given in the table below.

|L| |B| Why Spoiler Wins in 3 Rounds
0 1 g(1) = 1
0 2 g(1) = 1
0 3 g(1) = 1
1 2 g(2) = 2
1 3 g(2) = 2
2 3 3 rounds; Spoiler wins by playing 3 distinct elements in B

Next consider g(4), which we shall consider as a special case. Everything else will follow
via an induction argument based on g(r) for r > 4. Since g(4) = 10, we have |B| ≤ 9. The
following expression with 4 quantifiers distinguishes linear orders of size 9 and above from
those of size 8 and below:

Φ4,9 = ∀x∃y∀z∃w(
x < z < y ! (w ̸= z ∧ x < w < y) ∧
x < y < z ! (w ̸= z ∧ x < y < w) ∧
y < z < x! (w ̸= z ∧ y < w < x) ∧
z = x! (x < w < y ∨ y < w < x) ∧
z = y ! (x < y < w ∨ w < y < x)).

The sentence Φ4,9 is constructed from the sentence Φ4 used in the proof of Lemma 6.3
by removing Condition (6.5) of Φ4. In words, Φ4,9 states that “for every x either there are 5
elements after it or 4 elements before it”. In more detail, “for every x there is a y such that
if y > x then there are two or more elements on each side of y, both of which are greater
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than x and if y < x then there are two or more elements between y and x and one element
smaller than y”.

It is similarly easy to construct Φ4,8, Φ4,7, Φ4,6 and Φ4,5 just by removing more conditions
from Φ4. We present these sentences below for completeness.

Φ4,8 = ∀x∃y∀z∃w(
x < y < z ! (w ̸= z ∧ x < y < w) ∧
y < z < x! (w ̸= z ∧ y < w < x) ∧
z = x! (x < w < y ∨ y < w < x) ∧
z = y ! (x < y < w ∨ w < y < x)).

Φ4,7 = ∀x∃y∀z∃w(
x < y < z ! (w ̸= z ∧ x < y < w) ∧
z = x! (x < w < y ∨ y < w < x) ∧
z = y ! (x < y < w ∨ w < y < x)).

Φ4,6 = ∀x∃y∀z∃w(
z = x! (x < w < y ∨ y < w < x) ∧
z = y ! (x < y < w ∨ w < y < x)).

Φ4,5 = ∀x∃y∀z∃w(
z = x! (x < w < y ∨ y < w < x) ∧
z = y ! (x < y < w ∨ y < x)).

We have “filled in the gaps” for our base case of r = 4 and we will now proceed by
induction as we did in Theorem 6.4. A critical point is that all of these sentences for Φ4,k

for 4 < k ≤ 9 end with a universal and then an existential quantifier, meaning that Spoiler
plays the next-to-last round on L and the last round on B.

Suppose then that g(r − 1) ≤ |L| < |B| < g(r) for r > 4. Spoiler adopts the same
strategy as that described in the proof of Theorem 6.4 for the g(r) vs g(r)− 1 game. One
very minor nuance is that in the even r case there is not always a central element for Spoiler
to select for his 1st round move in L since |L| could be even. Similarly in the odd r case
there is not always a central element for Spoiler to select for his 1st round move in B since
|B| could be even. It suffices, however, for Spoiler to play as close to the center as possible.
As an example, the sentence Φ4,9 corresponds to playing the left point among the two
middle points in L in the 9 versus 8 game. All other details of the argument are unchanged,
including the fact that the last two rounds are played on L and then B.

Finally, we are able to prove the precise game theoretic analog of Theorem 1.7.

Theorem 8.4. Two linear orders, B and L, with |L| < |B|, can be distinguished by a
sentence with r quantifiers iff |L| < g(r).

Proof. If direction: If |L| < |B| < g(r) then B and L can be distinguished by Lemma 8.3. If
|L| < g(r) ≤ |B| then B and L can can be distinguished by the definition of g (Definition
1.5).



Vol. 21:1 MULTI-STRUCTURAL GAMES AND NUMBER OF QUANTIFIERS 10:31

Only if direction: If g(r) ≤ |L| < |B| then B and L cannot be distinguished by Corollary
7.15.

9. Conclusions

We have studied multi-structural (MS) games, which generalize E-F games by being played
over sets A, B of structures rather than over a pair A, B of individual structures. Whereas
E-F games can capture exactly the quantifier rank needed to describe a property, we showed
that MS games can capture exactly the number of quantifiers needed to describe a property.
As a first application, we used them to determine the number of quantifiers needed to
distinguish between linear orders of different sizes. This determination became quite nuanced
as we uncovered several pitfalls of interest in their own right.

The quantifier count is a natural complexity measure but has received scant attention
compared to the quantifier rank, number of distinct variable names, and measures of size
and depth of the sentence body.

We expect complexity differences to be magnified in studying other structures beyond
linear orders, such as higher-dimensional lattices, rooted trees, and other classes of graphs.
As with the related ideas of Lotfallah [Lot04], MS games extend readily to second-order
logic where they may bear on higher-order problems in descriptive complexity. For example,
MS games when adapted to second order logic can easily simulate Ajtai-Fagin games.
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Fräıssé games. Available at http://math.guc.edu.eg/Wafik/On the freedom of Spoiler in the EF
game.doc, 2005.

[Ros82] Joseph G. Rosenstein. Linear Orderings, volume 98 of Pure and Applied Mathematics. Academic
Press, New York and London, 1982.

[Ros05] Eric Rosen. On the first-order prefix hierarchy. Notre Dame J. Formal Logic, 46(2):147–164, 04
2005. doi:10.1305/ndjfl/1117755146.

https://doi.org/10.2307/2963939
https://doi.org/10.1006/inco.1995.1100
https://doi.org/10.2168/LMCS-1(1:6)2005
https://doi.org/10.1515/9781614516873.193
https://doi.org/10.1515/9781614516873.193
http://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/29/8/1311/32008427/exz025.pdf
http://arxiv.org/abs/https://academic.oup.com/logcom/article-pdf/29/8/1311/32008427/exz025.pdf
https://doi.org/10.1093/logcom/exz025
https://doi.org/10.1109/SFCS.1979.21
https://doi.org/10.1016/0022-0000(81)90039-8
https://doi.org/10.1007/978-1-4612-0539-5
https://www.springer.com/gp/book/9783540212027
https://doi.org/10.1002/malq.200310088
https://doi.org/10.1305/ndjfl/1117755146


Vol. 21:1 MULTI-STRUCTURAL GAMES AND NUMBER OF QUANTIFIERS 10:33

Appendix A. A Proof of Theorem 1.4

Proof. Note for future use that f(1) = 1 and f(r) = 2f(r − 1) + 1 for r > 1. The statement
is clearly true for r = 1. Assume inductively that it is true for r − 1. Let us refer to the
bigger linear order as B (for “big”) and the smaller linear order by L (for “little”).

We first show that if the size of L is less than f(r), then Spoiler wins the r-round game.
There are two possibilities, depending on whether the size of B is odd or even. Assume first
that it is odd, say of size 2k + 1. So the size of L is at most 2k, and since the size of L is
less than f(r), it follows that 2k < f(r) = 2f(r − 1) + 1, so k ≤ f(r − 1). In the first round,
Spoiler selects the middle point of B, call it s1. There are then k points to the left and k to
the right of s1 in B. After Duplicator selects a point d1 in L, there will be either fewer than
k points to the left of d1 in L or fewer than k points to the right of d1 in L.

In the former case, Spoiler now makes all of his moves to the left in either structure
(forcing Duplicator to do the same in the other structure), and in the latter case (when
there less than k points to the right of d1 in L.), Spoiler makes all of his moves to the right
in either structure (forcing Duplicator to do the same in the other structure). Spoiler now
wins by the inductive assumption, since k ≤ f(r − 1), and Spoiler has turned this into a
game with less than k elements in the smaller linear order.

Assume now that the size of B is even, say of size 2k. So the size of L is at most 2k− 1,
and since the size of L is less than f(r), we have

2k − 1 < f(r) = 2f(r − 1) + 1,

so 2k − 2 < 2f(r − 1), and so k − 1 < f(r − 1).
In the first round, Spoiler selects the kth point of B, call it s1. There are then k − 1

points to the left and k to the right of s1 in B. Duplicator now selects a point d1 in L. If
d1 is within the first k − 1 points in L, then Spoiler makes all remaining moves to the left
in both structures, since there are k − 1 points to the left of s1, fewer than k − 1 points to
the left of d1, and k − 1 < f(r − 1), so Spoiler wins by inductive hypothesis. If d1 is not
within the first k− 1 points in L, then there are at most k− 1 points to the right of d1. But
there are k points to the right of s1. Spoiler makes all remaining moves to the right in either
structures, and wins by inductive hypothesis since k − 1 < f(r − 1).

We now show that if the size of L is at least f(r), then Duplicator wins the r-round
game. If Spoiler selects s1 within the first f(r − 1) + 1 points in B or L, then Duplicator
selects d1 in the other structure with d1 = s1. There are now at least f(r − 1) points to the
right of the first move in L, and more points than that to the right of the first move in B.
Since Duplicator can simply mimic Spoiler’s choices when Spoiler moves to the left of the
first point chosen, Duplicator wins by the inductive hypothesis in considering moves on the
right.

Now assume that Spoiler selects s1 beyond the first f(r− 1)+1 points in B or L. There
are two cases, depending on whether Spoiler moves in B or L. Assume first that Spoiler
moves in B, and selects point s1, which is the kth point from the right of B. This splits
into two subcases, depending on whether or not k ≤ f(r − 1) + 1. If k ≤ f(r − 1) + 1, then
Duplicator selects d1 in L that is k points from the right of L. There are then at least
f(r − 1) points in L to the left of d1. Duplicator simply mimics the moves of Spoiler on
points to the right of s1 or d1, and uses her winning strategy for points to the left of s1 and
d1, where there is a winning strategy by inductive assumption, since there at least f(r − 1)
to the left of d1 and more than that to the left of s1.
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We now consider subcase 2, where k > f(r − 1) + 1. Let I (respectively, I ′) be the
closed interval in B (respectively, L) where the left endpoint is at position f(r− 1) + 1 from
the left of B (respectively, L), and whose right endpoint is at position f(r − 1) + 1 from the
right of B (respectively, L). By assumption, the point s1 in B is inside of I. The interval
I ′ contains the point that is f(r − 1) + 1 from the left of L, and so is nonempty. Assume
that the point s1 in B is m from the left side of I and n from the right side of I. Since L is
smaller in size than B, it follows that I ′ is smaller in size than I. So there is a point d1 in
I ′ that is at most m from the left side of I ′, and at most n from the right side of I ′. Since
there are at least f(r − 1) points to the left of d1 in L and at least f(r − 1) points to the
right of d1 in L, and since the number of points to the left (respectively, to the right) of
d1 in L is at most the number of points to the left (respectively, to the right) of s1 in B,
Duplicator can win by making use of her winning strategy on moves to the left of s1 or d1,
and make use of her winning strategy on moves to the right of s1 and d1.

Assume now that Spoiler selects point s1 in L. By assumption, s1 is beyond the first
f(r − 1) + 1 points in L. Assume s1 is the kth point from the right of L. Then Duplicator
selects d1 as the kth point from the right of B. On moves to the right of d1 or s1, Duplicator
simply mimics Spoiler’s moves, an on moves to the left of d1 or s1, Duplicator has a winning
strategy by inductive assumption, since there are more than f(r − 1) points to the left of s1
in L, and more than that to the left of d1 in B. So again, Duplicator wins. This concludes
the proof of the theorem.

Appendix B. Game based proof of Lemma 6.3

Proof of Lemma 6.3 via Games. We first consider the singleton 10 vs. 9 base case. We later
consider the case where |L| < 9, followed by |B| > 10, and lastly the case of many linear
orders B = {Bi},L = {Lj}, of sizes |Bi| ≥ 10, |Lj | ≤ 9. In the 10 vs. 9 game, Spoiler will
play first by playing the central element, L(5), on the L side. Without loss of generality,
Duplicator then plays all possible moves on the B side. See Figure 17 for an illustration.

Since there are 10 elements on each board on the B side, there will necessarily be more
elements on one side or the other of any move on any particular board. Refer to the side
that has more elements as the “long side” and the side with fewer elements as the “short
side.” Spoiler will now make his 2nd round moves on B, playing as close as he can to the
middle of the long side of every board. Since there are at least 5 elements on the long side
of every board, there will necessarily be at least two unplayed elements to either side of
Spoiler’s 2nd round move on the long side of each board. See Figure 18.

Refer to these moves that have two unplayed elements to either side of them as “middle
moves.” Duplicator then follows up, playing every possible move on the L side. The possible
moves are depicted in blue in Figure 19. There is plainly no value to playing on top of the
1st round move here so we omit that option.

For his 3rd move, Spoiler will now play on L, replying to each possible play of Duplicator
using the green moves in Figure 20. In order to keep an isomorphism with the elements in
boards 1 or 5 of Figure 20, Duplicator will have to play on top of her 1st move on B. Note
that this move breaks the isomorphism with all other L boards except board 1 if the B
board had its long side on the right of the first move, and except board 5 if the B board had
its long side on the left of the first move. Spoiler is going to play his 4th moves from the B
boards. In case the second move on B was right of the first move (in other words the long



Vol. 21:1 MULTI-STRUCTURAL GAMES AND NUMBER OF QUANTIFIERS 10:35

Figure 17: First Spoiler plays L(5) on the L side. Duplicator responds by playing all possible
moves on the B side. When discussing a given B board, given that there are 10
elements, there will either be more elements to the right or more elements to the
left of the 1st move played. We refer to the side that has more elements as the
“long side” and the side with fewer elements as the “short side.” Thus, in the
figure, on the board in which Duplicator has played B(5), the long side is to the
right and the short side is to the left.

Figure 18: Spoiler’s 2nd moves on the B side in blue), associated with each possible 1st
round move on this side by Duplicator. The moves are all in the “middle” of the
“long sides.” See the text for a description of these terms.

side was to the right), Spoiler will play to the right between the 1st and 2nd moves. Since
there is no corresponding move on the 1st board, this move breaks the isomorphism with all
L boards. Analogously, if the 2nd move on B was to the left of the 1st move, Spoiler will
play to the left between the 1st and 2nd moves, again breaking the isomorphism with all
boards. Since the arguments continue to be completely parallel, with plays on the top four
boards of Figure 20 corresponding to cases where the long side of B was to the right, and
play on boards 5 through 8 of Figure 20 corresponding to cases where the long side of B
was to the left, we shall focus just on the top four boards. We have ruled out the case where
Duplicator makes a 3rd round play that is on top of her 1st round play. To try to keep an
isomorphism going with board 4 in the Figure, Duplicator must play on top of her 2nd move.
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Figure 19: Possible 2nd moves by Duplicator (in blue) in response to Spoiler playing middle
moves from the long side of all B boards. The play-on-top move is omitted, as
discussed in the text.

Figure 20: 3rd moves of Spoiler (in green) in response to each possible 2nd move of Duplicator
(in blue).

But in this case Spoiler plays to the right of his 2nd move and there is no analogous move on
board 4. Hence Duplicator cannot keep an isomorphism going with board 4. Next, to keep
an isomorphism going with board 2 in Figure 20, Duplicator must play to the right between
her 1st and 2nd moves. But then Spoiler plays a second time to the right between his 1st
and 2nd moves, in the at least one additional unplayed element and Duplicator cannot reply
in kind on the 2nd board. An attempt to maintain the isomorphism with board 3 in the
Figure is seen to be fruitless with an analogous argument. Duplicator must play to the right
of the 2nd move on B boards that have their long side to the right. Spoiler then picks a
second unplayed element to the right of the 2nd move played on these boards and there is
no analogous move on the 3rd board on the L side. It is thus impossible to maintain an
isomorphism with any of the boards in Figure 20 and hence Spoiler wins this 10 versus 9
game.

Suppose now that |L| < 9. On his first move Spoiler will play a move that is as close
to the center of L as possible. Duplicator will then just have fewer possible moves in the
2nd round when she plays on L because |L| is smaller than in the prior analysis. Spoiler
still exploits the fact that there are two unplayed elements both to the left and right of
the 2nd round moves on the same side of the 1st round moves on B but not on L. If, for
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a 2nd round move, Duplicator plays immediately to the right or immediately to the left
of Spoiler’s round 1 move, Spoiler will, on his 3rd round move, play on L on top of his
1st move (just as before). If Duplicator plays an end move, which is not simultaneously
an immediate neighbor of Spoiler’s 1st move, then Spoiler will play on top of that move
(again, as before). On the other hand, if Duplicator plays a move that is two to the right
(alternatively, two to the left) of the 1st round move, and the move is not also an end move,
then Spoiler will play immediately to the right (alternatively, immediately to the left) of
center. Analogously, a Duplicator move that is a 2nd-from-end element and not covered in
any other case, will be responded to with an end move on the same side. In all cases the
analysis is exactly as before and results in a Spoiler victory. Finally, if |B| > 10, the analysis
is not particularly different than what we’ve seen; there is just a bit more “room” when
picking Spoiler’s 2nd round moves, which again must leave at least two unplayed elements
both to the right and left. All other aspects of the analysis are unchanged. Finally, if we
have a game with multiple linear orders, B = {Bi},L = {Lj} on the respective sides, with
|Bi| ≥ 10 and |Lj | ≤ 9, then Spoiler first plays on each liner order in L as described above,
and then alternates – the fact that there happen to be multiple linear orders of different
sizes has no impact on the strategy. The lemma is therefore established.

It is worth noting that Spoiler’s ability to play on top of existing moves was essential to
the above Spoiler-winning strategy. Suppose such a move were prohibited. Consider the
situation after Duplicator’s 2nd round moves – see Figure 19. Consider just the top 4 boards
in this figure and suppose for the moment that our 3rd round moves were constrained to
be on L(6)–L(9). By the analysis showing that the 5 vs. 4 game is Duplicator-winning
(proof of Lemma 4.2), recall that playing two 3rd round moves with both moves either to
the left of the 2nd round (blue) moves or to the right of the 2nd round moves would lead
to a Duplicator victory. Thus, under the assumption that Spoiler does not play on top of
an existing move, he would have to play moves on two boards in the L(1)–L(4) range. But
then, for a 3rd round move, Duplicator could mimic any one of these Spoiler moves on the
4th B board (e.g., playing B(i) if Spoiler played L(i)). It is then evident that any 4th round
move on this 4th B board would be fruitless, while if Spoiler makes his 4th round moves on
L, one of the moves on the two boards in which Spoiler previously played on L(1)–L(4) will
allow for a Duplicator victory with respect to the same 4th B board.

It is worth calling out this last fact explicitly:

Observation B.1. If Spoiler were not able to play on top of existing moves, the M-S game
on linear orders of sizes 10 vs. linear orders of size 9 would be winnable by Duplicator.

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
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