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Abstract. Many-valued logics in general, and real-valued logics in particular, usually focus on a notion of
consequence based on preservation of full truth, typically represented by the value 1 in the semantics given
in the real unit interval [0, 1]. In a recent paper (Foundations of Reasoning with Uncertainty via Real-valued
Logics, Proceedings of the National Academy of Sciences 121(21): e2309905121, 2024), Ronald Fagin, Ryan
Riegel, and Alexander Gray have introduced a new paradigm that allows to deal with inferences in propositional
real-valued logics based on a rich class of sentences, multi-dimensional sentences, that talk about combinations
of any possible truth values of real-valued formulas. They have proved a strong completeness result that allows
one to derive exactly what information can be inferred about the combinations of truth values of a collection
of formulas given information about the combinations of truth values of a finite number of other collections of
formulas. In this paper, we extend that work to the first-order (as well as modal) logic of multi-dimensional
sentences. We give a parameterized axiomatic system that covers any reasonable logic and prove a corresponding
completeness theorem, first assuming that the structures are defined over a fixed domain, and later for the logics
of varying domains. As a by-product, we also obtain a zero-one law for finitely-valued versions of these logics.
Since several first-order real-valued logics are known not to have recursive axiomatizations but only infinitary
ones, our system is by force akin to infinitary systems.

§1. Introduction. Typically the study of inference in many-valued logic answers the
following question: given that all premises in a given set Γ are fully true, what other
formulas γ can we see to be fully true as a consequence? This standard approach
can be deemed unsatisfying because, when it comes to valid inference, it disregards
almost all of the rich structure of truth values and concentrates only on preservation
of the value 1 (or on the preservation of a set of designated truth values [13, 34]). A
natural question involving all possible truth values would be instead: what information
can be inferred about the combinations of truth values of a collection of formulas given
information about the combinations of truth values of a finite number of other collections
of formulas?

In fact, the recent paper [24] poses the above question not just for sets of single
formulas but for sequences of propositional formulas taking any combinations of truth
values considered as a single expression called a multi-dimensional sentence (in short,
an MD-sentence). More precisely, an MD-sentence is a syntactic object of the form
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⟨σ1, . . . , σk;S⟩ where S (called the information set) is a set of k-tuples of truth values
for the sequence of formulas σ1, . . . , σk (called the components). The semantic intuition
is that ⟨σ1, . . . , σk;S⟩ should be true in an interpretation if the sequence of truth values
that σ1, . . . , σk take in that interpretation is one of the k-tuples in S.1 The simplest case
of MD-sentences so defined are those ⟨σ;S⟩ where σ is a single propositional formula
and S is a set of truth values from [0, 1], e.g. a singleton, an interval, a union of intervals
or the rational numbers in [0, 1].

In the context of fuzzy set theory, Pavelka introduced in [41] a formal system with
fuzzy sets of axioms, many-valued inference rules. In this system, every formal proof
comes with a degree, so, on one hand, Pavelka defined the provability degree of a formula
as the supremum of the degrees of all its proofs. On the other hand, he defined the truth
degree of a formula as the infimum of the set of values that it takes in each model. Then,
he proved, as a generalization of the completeness theorem of classical logic, that these
two degrees coincide for each formula. Subsequently, Vilém Novák extended Pavelka’s
logic and its completeness result to a first-order language in [36] and greatly developed
this approach with the theory of fuzzy logic with evaluated syntax [37–39]. Petr Hájek
gave in [28] a (partial) representation of fuzzy logic with evaluated syntax by means
of an expansion of Lukasiewicz logic with a language enriched with a truth-constant
r for each real number r ∈ [0, 1] (he later showed that it sufficed to consider rational
numbers and called the resulting system Rational Pavelka logic) and additional axioms,
and proved a Pavelka-style completeness theorem that showed the equality of provability
and truth degree for each formula. The enriched language of these systems allows to
write sentences of the form r → φ (which semantically means that the truth value of
φ is at least r) and φ → s (which semantically means that the truth value of φ is at
most s) and hence allows to stipulate in a syntactical manner that the truth value that the
formula φ has to take in a model belongs to a certain closed interval defined by rational
numbers (or a union thereof). It is not clear whether this syntax also allows to express
that the value of φ belongs to any arbitrary given subset S of [0, 1], which instead can
be directly expressed by design using MD-sentences of the form ⟨φ;S⟩.

The new approach to many-valued logics based on MD-sentences is relevant for AI
due to the growing interest in any development that may contribute to augmenting the ca-
pabilities of learning-based methods in combination with reasoning methods, resulting
in an integration that has been branded neuro-symbolic. In this setting, the expressive
power of classical logic, with its defining restriction to crisp notions (that is, the biva-
lence principle that assumes every meaningful statement to be either completely true or
completely false), becomes insufficient for the crucial goal of representing uncertain or
vague knowledge and conclusions. Hence, several recent neuro-symbolic approaches
employ real-valued logics instead, as one can see e.g. in logic tensor networks [6],
probabilistic soft logics [2], Tensorlog [16], or Logical Neural Networks [32, 42].

1Observe that having this new language is not the same as simply having a wider collection of designated
truth values and studying inference in that setting in the usual truth-preserving way. The general point is that
the freedom afforded by selecting S arbitrarily lets us consider inferences that relate certain formulas having
certain truth values to other formulas having other truth values in a totally unrestricted manner. For example,
if we take the MD-sentence ⟨A,B,A&B; [0, 1]3⟩ with semantics given by Product Logic (where & will be
interpreted as the product t-norm) we might want to infer ⟨A,B,A&B;S⟩ where S ⊆ [0, 1]3 is the set of all
triples ⟨s1, s2, s3⟩ such that s3 = s1 · s2.
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Following these motivations, the goal of [24] was to axiomatize inference genuinely
involving many truth values. The authors indeed have provided an axiomatization in
terms of MD-sentences in a parametrized way that captures all of the most common
propositional fuzzy logics and even logics that do not obey some standard restrictions
(such as conjunction being commutative). However, many reasoning scenarios cannot be
properly modeled only with the formal tools of a propositional language and need a more
expressive setting. In fact, Logical Neural Networks (LNNs) are AI models that can
only be properly formalized by means of the first-order MD-formulas that we introduce
here. Most interesting reasoning problems for which one might wish to use LNNs
require the expressive power of first-order logic (see the examples in [32, 42]), making
the propositional formalism insufficient. Therefore, in the present article, we generalize
the work in [24] to the first-order and modal contexts. Since it is already known that
first-order and modal real-valued logics are not necessarily recursively enumerable for
validity [43,46] and one needs instead infinitary systems [29,33] to deal with them,2 our
proposal is going to be necessarily more akin in applicability to an infinitary system than
a finitary one. In the applications discussed for LNNs all one actually needs is a fixed
finite domain (the universe of objects of a knowledge base), in which case one recovers
recursivity (Remark 14).

The article is arranged as follows. First, in § 2, we give a fast overview of the
necessary notions and results that we borrow from the propositional case studied in [24].
In § 3 we study the first-order (as well as modal) logic of multi-dimensional sentences
(generalizing the definition of [24]) when the models considered all have the same fixed
domain (which may be of any fixed cardinality, either finite or infinite). The key result
is a completeness result that follows the strategy of that in [24] for the propositional
case. In § 4 we show how our approach leads to parameterized axiomatizations of the
valid finitary inferences of many prominent first-order real-valued logics. Since this
includes several logics that are not recursively enumerable for validity, our system in
general does not yield a recursive enumeration of theorems. In §5, we prove a zero-one
law for finitely-valued versions of the logics dealt with in § 3. Finally, in § 6 we remove
the restriction of a fixed domain and provide a completeness theorem for the first-order
logic of multi-dimensional sentences on arbitrary domains.

§2. The propositional case: an overview. This section presents a brief summary of
the key results and notions from [24]. Following that article, we take a (propositional)
multi-dimensional sentence (in symbols, an MD-sentence) to be an expression of the
form ⟨σ1, . . . , σk;S⟩ where S ⊆ [0, 1]k. For a fixed k, we may speak of k-dimensional
sentences.

The semantics of MD-sentences is as follows. By a model we mean an assignment
M from atomic sentences (propositional variables) of a propositional language L to
truth values from [0, 1]. The usual real-valued logics ( Lukasiewicz, Product, Gödel,
etc.) all have inductive definitions indicating how to assign values to all formulas and
hence the notion of the value of an arbitrary formula in the language L in a given
model M is well-defined. Fixing one such semantics (which means we will get different
outcomes depending on the real-valued logic being considered), for an MD-sentence
⟨σ1, . . . , σk;S⟩, we say thatM satisfies this sentence (in symbols,M |= ⟨σ1, . . . , σk;S⟩)

2Infinitary presentations are not uncommon even for propositional many-valued logics, see e.g. [9, 31].
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if ⟨s1, . . . sk⟩ ∈ S where si (1 ≤ i ≤ k) is the value in M of σi according to the
semantics of the real-valued logic under consideration. Finally, given a set Γ ∪ {γ} of
MD-sentences, we write Γ ⊨ γ if every model that satisfies all the sentences in Γ also
satisfies γ; in this case we call ‘Γ ⊨ γ’ a valid inference.

Given these definitions one can consider Boolean combinations of MD-sentences.
For example, take γ1 := ⟨σ1

1 , . . . , σ
1
n;S1⟩ and γ2 := ⟨σ2

1 , . . . , σ
2
m;S2⟩. Then, we may

say that M |= γ1 ∧ γ2 iff M |= γ1 and M |= γ2. An interesting result from [24] is that
MD-sentences are closed under Boolean combinations, in the sense that for any Boolean
combination of such sentences there is an MD-sentence equivalent to such combination.
Hence, the collection of MD-sentences is expressively quite robust.

Example 1. An easy example of a valid MD-sentence in, say, Gödel semantics, is
the 3-dimensional sentence ⟨A,B,A∨B;S⟩ where S is the set of all triples ⟨s1, s2, s3⟩
where s1, s2 ∈ [0, 1] and s3 is the maximum of the set {s1, s2}.

Now it is natural to try to build a calculus that will capture exactly the valid finitary
inferences involving MD-sentences. This is what we do next.
Axioms. We have only one axiom schema:

(1) ⟨σ1, . . . , σk; [0, 1]k⟩.
Observe that (1) is an axiom schema. That is, for example, ⟨p ∧ q, p→ r; [0, 1]2⟩,
⟨p ∨ (q → r); [0, 1]⟩, and ⟨p, q, r; [0, 1]3⟩ are all axioms. The idea of the schema is
simply to assert that formulas always take some truth values.
Inference rules.

(2) From ⟨σ1, . . . , σk;S⟩ infer ⟨σπ(1), . . . , σπ(k);S′⟩,
where S′ = {⟨sπ(1), . . . , sπ(k)⟩ | ⟨s1, . . . , sk⟩ ∈ S} and π is a permutation of 1, . . . , k.

(3) From ⟨σ1, . . . , σk;S⟩ infer

⟨σ1, . . . , σk, σk+1, . . . , σm;S × [0, 1]m−k⟩.

(4) From ⟨σ1, . . . , σk;S1⟩ and ⟨σ1, . . . , σk;S2⟩ infer ⟨σ1, . . . , σk;S1 ∩ S2⟩.
(5) For 0 < r < k, from ⟨σ1, . . . , σk;S⟩ infer ⟨σ1, . . . , σk−r;S

′⟩, where S′ =
{⟨s1, . . . , sk−r⟩ | ⟨s1, . . . , sk⟩ ∈ S}.

(6) From ⟨σ1, . . . , σk;S⟩ infer ⟨σ1, . . . , σk;S′⟩, when S ⊆ S′.
At this point, let us make a clarification about rule (4). In (4), S1∩S2 could, naturally,

be empty. A very trivial example would be if we have the MD-sentences ⟨p; {0.2}⟩ and
⟨p; {0.3}⟩ for then {0.2} ∩ {0.3} = ∅. This means that, if we have the MD-sentences
⟨p; {0.2}⟩, ⟨p; {0.3}⟩, we can infer the contradictory (in the sense of having no model)
MD-sentence ⟨p; ∅⟩. Thus the set {⟨p; {0.2}⟩, ⟨p; {0.3}⟩} has itself no model.

Finally, before we introduce the last rule, let us define a piece of notation. For
any j-ary connective ◦, from a real-valued logic and real numbers s1, . . . , sj from
[0, 1] we can define the function ◦̂(s1, . . . , sj) giving as output what the connective ◦
indicates in a given real-valued logic for the values s1, . . . , sj . Given an MD-sentence
⟨σ1, . . . , σk;S⟩, we say that a tuple ⟨s1, . . . , sk⟩ ∈ S is good if sm = ◦̂(sm1

, . . . , smj
)

whenever σm = ◦(σm1 , . . . , σmj ) (for any mj-ary connective ◦ and for any m). In
other words, a tuple of truth values in an MD-sentence is good if it respects the semantics
under consideration of the connectives appearing in the MD-sentence (recall that for any
real-valued logic we are fixing the semantics of the connectives). Notice that this is a
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local property of each tuple in S, in the sense that it does not depend on what other
tuples are in the information set. Now, the last inference rule is

(7) From ⟨σ1, . . . , σk;S⟩ infer ⟨σ1, . . . , σk;S′⟩, where S′ is the set of good tuples in
S.

If there are no good tuples in S, then of course S′ = ∅, and thus the formula we started
with in the rule cannot have a model as it does not respect the semantics of the underlying
real-valued logic.

A proof of an MD-sentence γ from a set Γ of MD-sentences in this system consists,
as usual, of a finite sequence of MD-sentences such that the last member is γ and every
element of the sequence is either an axiom, one of the member of Γ, or it follows from
previous elements by one of the inference rules. We write Γ ⊢ γ to indicate that there
exists a proof of γ from Γ.

The central result from [24] states that if Γ is a finite set of MD-sentences, we have that
Γ ⊢ γ is equivalent toΓ ⊨ γ. It is noteworthy that this technique provides a parameterized
way of building calculi for MD-sentences with semantics for the standard real-valued
logics (where the parameters give a particular semantic meaning to the connectives
of the language); special extra steps need to be taken for the logic of probabilities, as
discussed in [24]. The restriction to finite sets is necessary due to the finitary character of

 Lukasiewicz logic [28]. Finally, in [24] a decision procedure for validity in this system
of MD-sentences for Gödel and Lukasiewicz semantics is introduced. Furthermore, the
algorithm of the procedure is implemented and tested on various interesting cases.

Remark 2. Observe that there is nothing sacred about the t-norm algebras on [0, 1]:
everything that has been said here could have been said for logics based on arbitrary fixed
residuated lattices (see e.g. [28]). The reader could attempt to check this by themselves
noticing that the definitions we have introduced only make use of algebraic properties
of t-norm algebras on [0, 1] that easily generalize to other lattice structures. This remark
similarly applies to the remainder of this article.

§3. The logic of a fixed domain. Throughout this section, let M be any fixed set,
finite or infinite. Observe that for finite fixed domains, by means of eliminating quantifiers
(turning a universal quantifier into a big conjunction and turning an existential quantifier
into a big disjunction), we could use an approach that essentially reduces the problem to
what was done in [24]. We work with a first-order relational vocabulary τ to simplify
things (but everything we do can be adjusted to accommodate function and constant
symbols).

3.1. First-order case (the logic of a fixed domain). This part is devoted to provide
an axiomatization of the logic of a fixed domain M (of any cardinality), in the sense of
the valid inferences over all models with domain M .

Let us first give the basic notions for the semantics of real-valued first-order logics.

Definition 3. Given a vocabulary τ , a real-valued first-order model M is a structure
⟨M, ⟨RM⟩R∈τ ⟩, where M ̸= ∅ is called the domain and for an n-ary predicate R ∈ τ ,
its interpretation in M is a mapping RM : Mn −→ [0, 1].

Inductively, using the semantics of the real-valued logic in question, one can define
the truth value of any formula for a sequence a of elements from M and write it as
∥φ[a]∥M:
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• ∥P [a]∥M = PM(a), for each P ∈ Predτ ;
• ∥ ◦ (φ1, . . . , φn)[a]∥M = ◦̂(∥φ1[a]∥M, . . . , ∥φn[a]∥M), for n-ary connective ◦;
• ∥(∀x)φ[a]∥M = inf{∥φ[a, e]∥M | e ∈M};
• ∥(∃x)φ[a]∥M = sup{∥φ[a, e]∥M | e ∈M}.3

Whenever the vocabulary includes the equality symbol ≈, its semantics is defined in
the following way:

• ∥(x ≈ y)[d, e]∥M = 1 iff d = e, for any d, e ∈M .
• ∥(x ≈ y)[d, e]∥M = 0 iff d ̸= e, for any d, e ∈M .

The definition of the truth value of a quantified formula as the infimum or the supre-
mum of the truth values of its instances is customary in many-valued logics as a natural
generalization of the semantics of quantifiers in classical logic.

A formula φ(x1, . . . , xn) can be said to be interpreted in the model M by the
mapping fφ : Mn −→ [0, 1] defined as ⟨a1, . . . , an⟩ 7→ ∥φ[a1, . . . , an]∥M (we also
say that φ(x1, . . . , xn) defines the mapping fφ in the model M).

Now we can define the set MD(M) of MD-sentences with domain M . Given a
natural number n, we denote by [0, 1]M

n the set of all functions from Mn to [0, 1]. Let
MD(M) contain all sentences of the form ⟨φ1(xφ1

), . . . , φk(xφk
);S⟩ where xφi

:=

xi1 , . . . , xini
, and S ⊆ [0, 1]M

n1 × . . . × [0, 1]M
nk. In the expression φi(x), the free

variables of φi (if any) will be exactly those in the list xφi . When xφi is empty, φi is
a sentence and what it gets assigned in a given S is simply a nullary function, in other
words, an element of [0, 1], as in the propositional case. If none of the formulas φi in
the MD-sentence ⟨φ1, . . . , φk;S⟩ contains free variables, then the situation is exactly
as in the propositional case [24] and there is no need to mention in S the set M .

Example 4. Take a vocabulary τ with only two unary predicates P and U . Then,
we can build the sentence ⟨Px, (∀x)Ux;S⟩ where S = {⟨f, r⟩ | r ∈ [0.5, 0.8), f is
a mapping with domain M and range included in the set [0, 1]}. Intuitively, we want
this sentence to be satisfied in a model M with domain M if the truth value of (∀x)Ux
is a real number in the interval [0.5, 0.8) and the interpretation of the predicate P is a
mapping from M into [0, 1].

Next, take a sentence ⟨φ1(xφ1), . . . , φk(xφk
);S⟩. Then, we may write

M |= ⟨φ1(xφ1
), . . . , φk(xφk

);S⟩

if ⟨fφ1
, . . . , fφk

⟩ ∈ S. Notice that, if any of theφis is a sentence, then the corresponding
fφi

is a constant function. If all the φs are sentences, this definition basically boils down
to what appears in [24].

We introduce now a proof system associated to the domain M , called the MD-system
of M , by considering the axioms and inference rules given in [24] for the propositional
case and modifying only what is needed:
Axioms. We have only one axiom schema:

(1) ⟨φ1(xφ1
), . . . , φk(xφk

), [0, 1]M
n1 × . . .× [0, 1]M

nk ⟩ for all formulas
φ1(xφ1

), . . . , φk(xφk
).

3The interpretation of universal quantifiers (resp. existential) as the infimum (resp. supremum) of the truth
values of their instances can be traced back to Mostowski [35]; see e.g. [15,28] for general studies of first-order
many-valued logics that follow this idea.
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Inference rules.
(2) From

⟨φ1(xφ1
), . . . , φk(xφk

);S⟩
infer

⟨φπ(1)(xφπ(1)
), . . . , φπ(k)(xφπ(k)

);S′⟩,
where S′ = {⟨fπ(1), . . . , fπ(k)⟩ | ⟨f1, . . . , fk⟩ ∈ S} and π is a permutation of
1, . . . , k.

(3) From
⟨φ1(xφ1

), . . . , φk(xφk
);S⟩

infer

⟨φ1(xφ1), . . . , φk(xφk
), φk+1(xφk+1

), . . . , φm(xφm);S×[0, 1]M
nk+1×. . .×[0, 1]M

nm ⟩.

(4) From
⟨φ1(xφ1

), . . . , φk(xφk
);S1⟩

and
⟨φ1(xφ1

), . . . , φk(xφk
);S2⟩

infer
⟨φ1(xφ1

), . . . , φk(xφk
);S1 ∩ S2⟩.

(5) For 0 < r < k, from

⟨φ1(xφ1
), . . . , φk(xφk

);S⟩

infer
⟨φ1(xφ1

), . . . , φk−r(xφk−r
);S′⟩,

where S′ = {⟨f1, . . . , fk−r⟩ | ⟨f1, . . . , fk⟩ ∈ S}.
(6) From

⟨φ1(xφ1), . . . , φk(xφk
);S⟩

infer
⟨φ1(xφ1), . . . , φk(xφk

);S′⟩
where S ⊆ S′.

Finally, before we introduce the last rule, let us define a piece of notation. Consider
an arbitrary domain M and functions f1, . . . , fj from some Cartesian products of
M into [0, 1]. Then, for any j-ary connective ◦ from a real-valued logic, we can
define the function ◦(f1, . . . , fj) as taking arguments componentwise as indicated by
the output of the fis (i ∈ {1, . . . , j}) and giving as output what ◦ indicates. Also,
we need to generalize also the notion of good tuple. Indeed, given an MD-sentence
⟨φ1(xφ1), . . . , φk(xφk

);S⟩, we say that a tuple ⟨f1, . . . , fk⟩ ∈ S is good if
(a) fm = ◦(fm1 , . . . , fmj ) whenever φm(xφm) = ◦(φm1(xφm1

), . . . , φmj (xφmj
)),

(b) fi(e1, . . . , enj
) = inf{fj(e1, . . . , enj

, e) | e ∈M} whenever
φi(xφi

) = ∀y φj(xφj
), for all e1, . . . , enj

∈Mnj ,
(c) fi(e1, . . . , enj

) = sup{fj(e1, . . . , enj
, e) | e ∈M} whenever

φi(xφi) = ∃y φj(xφj ), for all e1, . . . , enj ∈Mnj .
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(7) From
⟨φ1(xφ1), . . . , φk(xφk

);S⟩
infer

⟨φ1(xφ1), . . . , φk(xφk
);S′⟩,

where S′ is the set of good tuples in S.
The following result establishing the soundness of the formal system is a simple

exercise but it helps in building intuition on how the formalism works.

Lemma 5. The axioms and rules of the system are sound with respect to the semantics.

Proof. For axiom schema (1), given a model M with domain M , and formulas
φ1(xφ1), . . . , φk(xφk

), evidently, fφk
∈ [0, 1]M

nk by definition. Thus the first-order
MD-sentence ⟨φ1(xφ1

), . . . , φk(xφk
), [0, 1]M

n1 × . . .× [0, 1]M
nk ⟩ holds in M.

For rule (2), if M is a model and ⟨φ1(xφ1
), . . . , φk(xφk

);S⟩ holds in M, clearly for
any permutation π of 1, . . . , k, if S′ = {⟨fπ(1), . . . , fπ(k)⟩ | ⟨f1, . . . , fk⟩ ∈ S}, we
also have that ⟨φπ(1)(xφπ(1)

), . . . , φπ(k)(xφπ(k)
);S′⟩ holds in M.

For rule (3), if M is a model of ⟨φ1(xφ1), . . . , φk(xφk
);S⟩, it immediately follows

that ⟨fφ1 , . . . , fφk
⟩ ∈ S, and taking formulas φk+1(xφk+1

), . . . , φm(xφm), it is also
obvious that ⟨fφk+1

, . . . , fφm
⟩ ∈ [0, 1]M

nk+1 × . . . × [0, 1]M
nm . Thus the first-order

MD-sentence

⟨φ1(xφ1
), . . . , φk(xφk

), φk+1(xφk+1
), . . . , φm(xφm

);S×[0, 1]M
nk+1×. . .×[0, 1]M

nm ⟩
holds in M.

For rule (4), if we have both

M |= ⟨φ1(xφ1), . . . , φk(xφk
);S1⟩

and
M |= ⟨φ1(xφ1), . . . , φk(xφk

);S2⟩
then ⟨fφ1

, . . . , fφk
⟩ ∈ S1 and ⟨fφ1

, . . . , fφk
⟩ ∈ S2. Thus,

M |= ⟨φ1(xφ1), . . . , φk(xφk
);S1 ∩ S2⟩,

as desired.
We leave the proofs of the soundness of rules (5)–(7) to the reader. The key observation

for rule (7) is thatS′ retains only the elements ofS corresponding to formulas that respect
the semantics of the real-valued logic in question. ⊣

A proof of an MD-sentence γ from a set Γ of MD-sentences in this system consists,
as usual, of a finite sequence of MD-sentences such that the last member is γ and every
element of the sequence is either an axiom, one of the member of Γ, or it follows from
previous elements by one of the inference rules. We write Γ ⊢M γ to indicate that there
exists a proof of γ from Γ.

Before stating Lemma 8, let us introduce some terminology.

Definition 6. Given a setA of first-order formulas, we will say thatA is closed under
subformulas if for any formula φ ∈ A, every subformula of φ is also in A.

Definition 7. We say that an MD-sentence ⟨φ1(xφ1
), . . . , φk(xφk

);S⟩ is mini-
mized, i.e., whenever ⟨f1, . . . , fk⟩ ∈ S, there is a model of ⟨φ1(xφ1

), . . . , φk(xφk
);S⟩

such that for 1 ≤ i ≤ k the interpretation of φi(xφi) is fi.
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Lemma 8. Let ⟨φ1(xφ1
), . . . , φk(xφk

);S⟩ be the premise of Rule (7) and assume
that G = {φ1(xφ1), . . . , φk(xφk

)} is closed under subformulas. Then, the conclu-
sion ⟨φ1(xφ1), . . . , φk(xφk

);S′⟩ is minimized and this is witnessed by models with
domain M .

Proof. Assume that ⟨f1, . . . , fk⟩ ∈ S′. Since G is closed under subformulas, there
is a subsequence of ⟨f1, . . . , fk⟩ that determines interpretations on the domain M for
the atomic formulas appearing in G, i.e., interpretations for the predicates of τ . But this
subsequence then defines a model M based on the domain M where the interpretations
of φ1(xφ1

), . . . , φk(xφk
) are as indicated by ⟨f1, . . . , fk⟩. This is because Rule (7) is

designed to select only those sequences ⟨f1, . . . , fk⟩ that respect the semantics of the
underlying real-valued logic. ⊣

Remark 9. Observe that Lemma 8 does not claim that any MD-sentence has a
model. It is rather telling us that if the set {φ1(xφ1

), . . . , φk(xφk
)} of traditional

formulas in the MD-sentence ⟨φ1(xφ1
), . . . , φk(xφk

);S⟩ used as a premise in an ap-
plication of Rule (7) is closed under subformulas, then if S′ ̸= ∅, the MD-sentence
⟨φ1(xφ1

), . . . , φk(xφk
);S′⟩ coming from Rule (7) has a model.

Remark 10. Lemma 8 plays an important role in the completeness argument in this
general framework. Roughly speaking, it relies on the fact that the set S′ can encode a
model for a series of formulas φ1(xφ1

), . . . , φk(xφk
) with domain M by a sequence of

interpretations to the finite list of predicates appearing in such formulas in a way that
is consistent with the semantics of the underlying real-valued logic. It is not difficult to
see that, for a finite vocabulary τ , we can find a set S encoding all possible models with
domain M . For example, if τ is the set {P1, . . . , Pk} of predicates, then we can take S
to be the set of all sequences ⟨f1, . . . , fk⟩ of possible interpretations of the predicates
from our list on the domain M .

Similarly to [24, Lemma 5.3], we obtain:

Lemma 11. The conclusion and premises of rules (2), (3), (4), and (7) are logically
equivalent.

Proof. The equivalence of the premise and conclusion of Rule (2) is clear. For
Rules (3) and (7), the fact that the premise logically implies the conclusion follows from
soundness of the rules, as does the fact that the conjunction of the premises of Rule (4)
logically implies the conclusion. We now show that for Rules (3) and (7), the conclusion
logically implies the premise. For Rule (3), the equivalence follows from the soundness
of Rule (5). For Rule (4), the conclusion logically implies the each of the premises, and
hence the conjunction of the premises, because of the soundness of Rule (4).

We will sketch the argument for Rule (7). Let M be a model such that

M |= ⟨φ1(xφ1), . . . , φk(xφk
);S⟩.

But then the interpretations f1, . . . , fk of the formulas φ1(xφ1
), . . . , φk(xφk

) in the
model M respect the semantics of the connectives and quantifiers according to the real-
valued logic in question. Since ⟨f1, . . . , fk⟩ ∈ S by hypothesis, we must have that
⟨f1, . . . , fk⟩ ∈ S′ where S′ is as in Rule (7). Hence,

M |= ⟨φ1(xφ1), . . . , φk(xφk
);S′⟩,
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as desired. On the other hand, if

M |= ⟨φ1(xφ1), . . . , φk(xφk
);S′⟩,

given the soundness of Rule (6), it follows that

M |= ⟨φ1(xφ1), . . . , φk(xφk
);S⟩.

⊣
The following lemma is straightforward to show.

Lemma 12. Minimization is preserved by the rules (2) and (4), i.e. if the premises of
the rules are minimized, then their conclusions are too.

Let Γ ⊨M γ mean that for each model M with domain M , if M |= Γ then M |= γ.
We call the relation ⊨M the MD-logic ofM . We can now reconstruct the soundness and
completeness argument from [24] and obtain the following theorem that the MD-system
of M is actually an axiomatization of the MD-logic of M .

Theorem 13 (Completeness of the logic of a fixed domain). Let Γ be a finite set of
MD-sentences and γ an MD-sentence. Then, Γ ⊢M γ iff Γ ⊨M γ.

Proof. To see that Γ ⊢M γ only if Γ ⊨M γ, one proceeds, as usual, by induction on
the length of the proof, i.e. we start by showing that the axiom schema is sound and that
the rules preserve the truth of the MD-sentences. For example, every instance of the
axiom schema is sound since every formula in the usual first-order sense is interpreted
by some mapping on a given model based on the domain M .

To show completeness, we follow the argument on [24, p. 12] and thus only provide
a sketch. The strategy is to transform Γ into an equivalent MD-sentence from which
γ can be deduced. We may assume without loss of generality that Γ is non-empty, for
otherwise we could replace it by an instance of Axiom (1).

Indeed, assume that we have a finite set Γ = {γ1, . . . , γn} of MD-sentences in
which, for each i ∈ {1, . . . , n}, γi is the MD-sentence ⟨φi

1(xφ1), . . . , φ
i
k(xφki

);Si⟩.
Suppose further that γ is ⟨φ0

1(xφ1
), . . . , φ0

k(xφk0
);S0⟩. Then, take the sets Γi =

{φi
1(xφ1

), . . . , φi
k(xφki

)} and Γ0 = {φ0
1(xφ1

), . . . , φ0
k(xφk0

)}. We take G to be the
usual closure under subformulas of the set

⋃
j≥0 Γj .

G is a finite set and then we can follow step by step the argument in [24], applying
our slightly modified Rules (3) and (7). In particular, we make use of Lemma 8 instead
of [24, Lemma 5.2].

For each i such that 1 ≤ i ≤ n, we set Hi = G \ Γi. Let ri be the cardinality of Hi

and suppose that Hi = {θ1(xθ1), . . . , θri(xθri )}. Then, by applying Rule (3), we can
deduce the MD-sentence

⟨φi
1(xφ1

), . . . , φi
k(xφki

), φk+1(xφk+1
), . . . , φm(xφm

);S×[0, 1]M
nk+1×. . .×[0, 1]M

nm ⟩

from ⟨φi
1(xφ1

), . . . , φi
k(xφki

);S⟩, i.e.γi, where the sequenceφk+1(xφk+1
), . . . , φm(xφm

)

is θ1(xθ1), . . . , θri(xθri ). Now let ψi be the MD-sentence that results from applying
Rule (7) to the conclusion of Rule (3) displayed above.

Let φ1(xφ1
), . . . , φp(xφp

) be some ordering of the formulas in G; then, since the
set of first-order formulas that appear in ψi is exactly G, we may use Rule (2) to turn
ψi into an equivalent MD-sentence of the form ⟨φ1(xφ1), . . . , φp(xφp);Ti⟩, which we
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may denote by χi. Furthermore, since in deriving χi, we only appealed to rules (2), (3)
and (7), by Lemma 11, this MD-sentence is logically equivalent to γi.

Assume that T = T1 ∩ . . . ∩ Tn and define χ := ⟨φ1(xφ1), . . . , φp(xφp);T ⟩. From
Lemma 8, each ψi is minimized since it comes from Rule (7) and

{φi
1(xφ1

), . . . , φi
k(xφki

), φk+1(xφk+1
), . . . , φm(xφm

)}
is closed under subformulas. Moreover, by Lemma 12, each χi is minimized and, hence,
χ is minimized.

The MD-sentence χ can be derived from the MD-sentences χi by repeated ap-
plications of Rule (4). In fact, by Lemma 11, χ and {χ1, . . . , χn} have the same
logical consequences, and since χi is equivalent to γi, we have that {χ1, . . . , χn} and
{γ1, . . . , γn} = Γ have the same logical consequences. Hence, χ ⊨ γ given that Γ ⊨ γ
by hypothesis. Furthermore, in order to show that Γ ⊢ γ we simply need to show that
χ ⊢ γ since Γ ⊢ χ by the above reasoning.

Recall that γ is ⟨φ0
1(xφ1

), . . . , φ0
k(xφk0

);S0⟩ andχ is ⟨φ1(xφ1
), . . . , φp(xφp

);T ⟩, so
by applying Rule (2) we can rearrange the order of the formulas φ1(xφ1

), . . . , φp(xφp
)

so they start with φ0
1(xφ1

), . . . , φ0
k(xφk0

) and infer from χ the MD-sentence χ′ :=

⟨φ0
1(xφ1

), . . . , φ0
k(xφk0

) . . . ;T ′⟩. Using Lemma 11, we may see that χ and χ′ are
logically equivalent. Hence, χ′ ⊨ γ since χ ⊨ γ. Given that χ is minimized, it follows
that χ′ is too by Lemma 12. Using Rule (5), from χ′ we may infer an MD-sentence χ′′

of the form ⟨φ0
1(xφ1

), . . . , φ0
k(xφk0

);T ′′⟩.
The final step in the proof is to show that T ′′ ⊆ S0 (which uses minimization in a

fundamental manner) for then we can use Rule (6) to infer γ from χ′′, and hence we
would have χ ⊢ χ′ ⊢ χ′′ ⊢ γ, which means that χ ⊢ γ as desired.

Assume now that ⟨f1, . . . , fk⟩ ∈ T ′′ to show that ⟨f1, . . . , fk0
⟩ ∈ S0. By definition

of T ′′, there is a ⟨f1, . . . , fk0
, . . . , fp⟩ ∈ T ′. Given that χ′ is minimized, there is a

model M of χ′ such that the interpretations of the formulas φ0
1(xφ1

), . . . , φ0
k(xφk0

) are
f1, . . . , fk0

, respectively. Since χ′ ⊨ γ, then M |= γ, and so ⟨f1, . . . , fk0
⟩ ∈ S0. ⊣

There are some subtle points to consider around what we have done, which we will
discuss in the next remarks. It is important to stress that we have axiomatized the logic
of all models based on the set M , not the logic of one particular model M based on M .

Remark 14. Let us look at the case of two-valued logic with equality (i.e. the classical
first-order logic which, of course, is covered by our approach). Let M be a finite set
(say of size n). Now, enumerate all the first-order validities of the form (|M | = n) → φ
where φ is any first-order formula and |M | = n is the first-order formula saying that
the size of the domain M is exactly n. In the case of finite domains, one might modify
the approach here by allowing only MD-sentences that are interval-based (in the sense
of [24], that is, where the sets of truth values involved in S are unions of finitely-many
rational intervals) or that come from such sentences by an application of Rule (7), making
the set MD(M) countable, and then it is possible to show by essentially the argument
in [24, Theorem 6.1] that validity is not only recursively enumerable but decidable on
such domains for Lukasiewicz and Gödel logic.

Remark 15. Recall that satisfiability on countably infinite models is not recursively
enumerable in two-valued first-order logic. Now take a first-order sentence φ and let
φ1(xφ1

), . . . , φk(xφk
), φ be the list of all its subformulas. Fixing a countably infinite

domainM , we may consider now the MD-sentence ⟨φ1(xφ1), . . . , φk(xφk
), φ;S⟩ (call
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it ψ) where S := {0, 1}Mn1 × . . . × {0, 1}Mnk × {1}. Take now the MD-sentence
obtained by applying our Rule (7) to this sentence, ⟨φ1(xφ1), . . . , φk(xφk

), φ;S′⟩ (call
it ψ′). Observe that ψ and ψ′ are equivalent. Furthermore, φ has a countably infinite
model iff ψ is satisfiable iff ψ′ is satisfiable. Finally, by minimization and the semantics
of MD-sentences, ψ′ is satisfiable iff S′ is non-empty. Hence, the problem of whether
an arbitrary S′ is non-empty is not recursively enumerable.

Rule (7) implies that our formal system is not finitistic in the sense of metamathe-
matics [30] since when infinite domains are involved it cannot all be formalizable in
arithmetic, it goes into the realm of infinitary mathematics. In this sense it is akin to
an infinitary proof system (although it does not involve infinitary formulas in the usual
sense). Thus the system we have presented here is by necessity less ‘usable’ in practice
than a finitary one but not than an infinitary one.

3.2. Propositional modal logic (of a fixed frame). Expansions of propositional
many-valued logics with modalities are a topic of lively research (see e.g. [3, 10, 11, 14,
25, 26, 46] due to their richer expressive power that makes them more amenable for a
variety of applications, as compared to purely propositional logics. Thus, it is natural to
extend them to the setting of multi-dimensional sentences too.

For this subsection, fix a frame F := ⟨M,R⟩ where R ⊆ M2 is a binary relation
on a non-empty set M (finite or infinite, where we may call the elements M worlds).4
Consider now a vocabulary τ consisting only of propositional variables as in modal
logic and a base modal language with 2 and 3 (unlike classical logic, many-valued
logics do not allow in general to define these two operators from one another). Now the
set MD(M) of MD-sentences contains all the expressions of the form ⟨φ1, . . . , φk;S⟩
where each φi is a modal formula and S ⊆ ([0, 1]M )k.

For each real-valued model M-based on F = ⟨M,R⟩, i.e., a structure where each
propositional variable p ∈ τ is interpreted as a mapping pM : M −→ [0, 1], we can
define a notion of truth value at a world w ∈M :

• ∥p[w]∥M = pM(w), for each p ∈ τ ;
• ∥ ◦ (φ0, . . . , φn)[w]∥M =
◦(∥φ0[w]∥M, . . . , ∥φn[w]∥M), for n-ary connective ◦;

• ∥2φ[w]∥M = inf{∥φ[v]∥M | v ∈M, ⟨w, v⟩ ∈ R};
• ∥3φ[w]∥M = sup{∥φ[v]∥M | v ∈M, ⟨w, v⟩ ∈ R}.
Every formula φ can be said to be interpreted in the model M by the mapping

fφ : M −→ [0, 1] defined as w 7→ ∥φ[w]∥M (we also say that φ defines the mapping fφ
in the model M). Given an MD-sentence ⟨φ1, . . . , φk;S⟩, we write

M |= ⟨φ1, . . . , φk;S⟩
if the formulas φ1, . . . , φk respectively define mappings f1, . . . , fk in the model M
and ⟨f1, . . . , fk⟩ ∈ S.

As with the first-order case, from the axioms and inference rules from [24] we need
to modify only the following:
Axioms.

(1) ⟨φ1, . . . , φk; [0, 1]
M × . . .× [0, 1]M ⟩ for any formulas φ1, . . . , φk.

4In this paper we consider only this classical notion of frame, although the literature of many-valued logics
has also studied natural many-valued generalizations in which R would be taken as a mapping from M2 to
[0, 1] (or to other more general structures of truth-degrees); see e.g. [10].
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Inference rules.
(3) From

⟨φ1, . . . , φk;S⟩
infer

⟨φ1, . . . , φk, φk+1, . . . , φm;S × [0, 1]M × . . .× [0, 1]M ⟩,
and we also need to modify the notion of good tuple for Rule (7). Indeed, given an

MD-sentence ⟨φ1, . . . , φk;S⟩, now we say that a tuple ⟨f1, . . . , fk⟩ ∈ S is good if
(a) fm = ◦(fm1 , . . . , fmj ) whenever φm = ◦(φm1 , . . . , φmj ),
(b) fi(w) = inf{fj(e) | e ∈M, ⟨w, e⟩ ∈ R} whenever φi = 2φj , for all w ∈M ,
(c) fi(w) = sup{fj(e) | e ∈M, ⟨w, e⟩ ∈ R} whenever φi = 3φj , for all w ∈M .
As before, we get the following (since the interpretations of the propositional variables

in τ is what determines a model over F):
Lemma 16. Let ⟨φ1, . . . , φk;S⟩ be the premise of Rule (7) and assume that G =

{φ1, . . . , φk} is closed under subformulas in the usual sense. Then, the conclusion
⟨φ1, . . . , φk;S

′⟩ is minimized.
Once more, closely following the argument from [24], we may show that:
Theorem 17 (Completeness of the logic of a fixed frame). For Γ a finite set of MD-

sentences and γ an MD-sentence, Γ ⊢F γ iff Γ ⊨F γ.
The proofs of Lemma 16 and Theorem 17 are very similar (modulo some trivial

modifications) to those of Lemma 8 and Theorem 13, respectively, and thus we omit
them. One might think of modal formulas as first-order formulas in one variable, and
then it is easy to see how the same arguments work.

Remark 18. An interesting topic of research would be to extend this multidimensional
approach to many-valued first-order modal logics. This can be done for a fixed frame
and a fixed domain

§4. Axiomatizations of prominent first-order (and propositional modal) real-
valued logics. Recall that, in the context of classical first-order logic, by the Löwenheim–
Skolem theorem, the first-order sentences which are true in all countably infinite models
coincide with the sentences that are true in all infinite models. For if φ is true in all
countably infinite models, then ¬φ cannot have any infinite model since otherwise ¬φ
would have a countably infinite model by the Löwenheim–Skolem theorem. Moreover,
the class of infinite models is axiomatizable in first-order logic: consider the theory
formed by the sentences “there are at least n elements” for all natural numbers n > 0.
Hence, the first-order sentences which are true in all infinite models are recursively
enumerable.

Let us analyze now what happens in the real-valued case. In this section we will
consider only the case of languages without equality. This is a very standard practice
in mathematical fuzzy logic (e.g. [1, 7, 29, 33, 43, 44]). It is well-known that neither

 Lukasiewicz nor Product first-order logic have a recursively enumerable set of validities
with the semantics given on [0, 1] (see [43] and [1], respectively). In contrast, Gödel
first-order logic is recursively axiomatizable [44], and both Lukasiewicz and Product
logics can be axiomatized by the addition of an infinitary rule (see [7, 29] and [33],
respectively).
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Proposition 19. Let L be a first-order real-valued logic.5 Suppose that we have a
countable vocabulary without equality. Then, for any L-sentences φ1, . . . , φk and any
finite sequence ⟨r1, . . . , rk⟩ of reals from the interval [0, 1], there is an L-model where
φ1, . . . , φk take values r1, . . . , rk respectively if there is an L-model with a countably
infinite domain where φ1, . . . , φk take values r1, . . . , rk respectively. Moreover, the
converse of this implication holds even if the vocabulary has equality.

Proof. Suppose there is an L-model, M, where φ1, . . . , φk take values r1, . . . , rk
respectively. By [17, Thm. 31], ifM is finite, one can build an L-model with a countably
infinite domain where φ1, . . . , φk take values r1, . . . , rk respectively (in fact there is a
mapping between the two models that preserves the truth values of all formulas). On the
other hand, by [17, Thm. 30], ifM is infinite, one can build an L-model with a countably
infinite domain where φ1, . . . , φk take values r1, . . . , rk respectively (in such a way
that the countable model can be chosen to be an elementary substructure of the original
that preserves the truth values of all formulas). ⊣

From this proposition and Theorem 13 we immediately obtain that consequence from
finite sets of premises in Lukasiewicz, Product, and Gödel first-order real-valued logic
(without equality) is complete with respect to the MD-system of a countable domain:

Corollary 20. LetM be a fixed countably infinite domain, letL be either Lukasiewicz,
Product, or Gödel first-order real-valued logic without equality, and let ⊨L be the cor-
responding consequence relation. For any finite set φ1, . . . , φk, ψ of L-sentences, we
have:

⟨φ1; {1}⟩, . . . , ⟨φk; {1}⟩ ⊢M ⟨ψ; {1}⟩ iff φ1, . . . , φk ⊨L ψ.

Observe that Corollary 20 would fail in the presence of equality in the vocabulary.
This is because general validity cannot be reduced to truth in any particular infinite (even
if only countable) model. The reason is that, if ψ is the first-order sentence expressing
that the size of the domain is 3 then ¬ψ would hold in every infinite domainM , whereas
this cannot be a valid sentence in any of the logics we are considering here since ψ holds
in models with universes of size 3. Thus, we would have that ̸⊨L ¬ψ but ⊢M ¬ψ.

The purpose of any completeness theorem is to obtain the equivalence between a
universal statement (about validity) and an existential statement (about the existence of
a proof). The claim of existence of a proof is a Σ1 claim on the natural numbers when
the proof system is arithmetizable. By Corollary 20 and since neither Lukasiewicz nor
Product first-order logic has a recursively enumerable set of validities, our proof systems
are not arithmetizable when the domain is infinite.

Remark 21. Observe that, even in the case of classical logic (without equality –the
situation with equality is analogous and dealt with in §6), the axiomatization we have
presented here (when the domain in question is infinite) cannot be recursive due to
Rule (7), where most of the strength of the present approach resides (cf. Remark 15).
Naturally, there are much more fine-tuned axiomatizations of classical logic and many
of the real-valued logics under consideration here, but the sacrifice we have made in
terms of the manageability of our proof system has been in the interest of generality, so
we can encompass all these logics at once.

5For example,Lmight be Lukasiewicz, Product, or Gödel first-order logic or, more generally, any first-order
extension of an algebraizable logic in the sense of [17].



REASONING VIA REAL-VALUED FIRST-ORDER LOGICS 15

Remark 22. Readers not familiar with encoding syntax and proofs in set theory may
skip this remark. By representing MD-sentences as sets and proofs as sequences of such
sets (similarly as things are done in infinitary logic [18]), our notion of proof will be a Σ1

predicate (in the Lévy hierarchy) over the set of all sets hereditarily of some sufficiently
large cardinality κ (in fact cardinality |2ω|+ 1 would suffice for the case of a countably
infinite fixed domain). Therefore, we have completeness in the same sense as it can be
obtained in infinitary proof systems. Let us sketch the details of this formalization. Sup-
pose that we fix a countable domainM . To each formulaϕwe can assign a Gödel number
⌜ϕ⌝ in the usual manner [30]. We may then assign to each MD-sentence ⟨ϕ1, . . . , ϕk;S⟩
the “Gödel set” ⌜⟨ϕ1, . . . , ϕk;S⟩⌝ which is simply the set ⟨⌜ϕ1⌝, . . . , ⌜ϕk⌝;S⟩ (using
the Kuratowski definition of ordered tuples). Take now the collection H(|2ω| + 1)
containing all sets x hereditarily of cardinality < |2ω| + 1 in the sense that x, its
members, its members of members, etc., are all of cardinality < |2ω| + 1. Consider
now the following set-theoretic structure: ⟨H(|2ω|),∈↾ H(|2ω|+ 1)⟩. All Gödel sets
⟨⌜ϕ1⌝, . . . , ⌜ϕk⌝;S⟩ are elements ofH(|2ω|+1). A collectionK ⊆ H(|2ω|+1) is said
to be Σ1 onH(|2ω|+1) if it is definable in the structure ⟨H(|2ω|+ 1),∈↾ H(|2ω|+ 1)⟩
by a set theoretic formula equivalent to one built from atomic formulas and their nega-
tions by means of the connectives∧,∨, the restricted quantifier ∀x ∈ y and the quantifier
∃x. One can check then that the notion of ⟨⌜ϕ1⌝, . . . , ⌜ϕk⌝;S⟩ being a provable formula
in our system is Σ1 on H(|2ω|+ 1) because it claims the existence of a finite sequence
of MD-sentences such that ⟨⌜ϕ1⌝, . . . , ⌜ϕk⌝;S⟩ is the last element of such sequence
and every MD-sentence in it has been obtained by applying one of a finite number of
rules to previous elements.

Remark 23. From the results in [46] we know that neither Lukasiewicz nor Product
modal logics on the interval [0, 1] have recursively enumerable finitary “global” con-
sequence relations.6 Hence, similarly to what we observed for the first-order case, the
approach here does axiomatize the logics in question, but it gives recursive enumerability
only when the frame is finite, not in general.

Part of the interest of the present approach is the uniformity it provides in axiomatizing
the previously mentioned logics (which were known to be axiomatizable by other infini-
tary methods). We are essentially giving one recipe to deal with all cases. Moreover,
none of our rules are explicitly infinitary and the infinitary component of our formulas
is hidden in the sets S.

Finally, in general, we are clearly axiomatizing more levels of formal reasoning than
it could be done before, for preservation of value 1 is a mere fraction of the possibilities
that the present system actually handles. The system axiomatizes genuine real-valued
reasoning in all of Gödel, Lukasiewicz, and Product first-order (and modal) logics.

§5. A zero-one law for MD-logics. Beginning with [19] in the context of graph
theory, a natural question that one can consider in general is: what is the probability
that a structure satisfies P when randomly selected among finite structures with the
same domain for a suitable probability measure? Or, more interestingly, what do these
probabilities converge to (if anything) as the size of the domain of the structures grows
to infinite? Well-known and highly celebrated results show that when the properties

6This means that Γ ⊨ ϕ if for all models based on frames from a given class, if Γ is true at all points (or
worlds) of the model, then ϕ is similarly true in all of them.
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under consideration are expressible by formulas of a certain logic the probabilities
converge to either 0 or 1 (and so we say that the formula is either almost surely false or
almost surely true, respectively). After an early result for monadic predicate logic [12],
the topic of logical zero-one laws was properly started independently in the papers by
Glebskiı̆ et al [27] and Fagin [23] for first-order classical logic on finite purely relational
vocabularies.

In this section, we want to establish a zero-one law for certain MD-logics, namely those
based on suitable finite subalgebras of [0, 1] (of the form ⟨A,∧A,∨A,&A,→A, 0

A
, 1

A⟩).
For example, both Gödel and Lukasiewicz logic have multiple finitely-valued versions
(though Product logic does not), and we will list some examples below. This restriction
to the finite setting is because we wish to have, when our vocabularies are relational and
finite, only a finite number of possible models on a given finite domain, in analogy to
what happens in classical logic in [23] (or in the finitely-valued case already considered
in [5]). Regarding infinitely-valued logics, the recent paper [4] contains a zero-one law
for infinitely-valued Lukasiewicz logic and related systems.

Example 24 (The algebra of Lukasiewicz 3-valued logic). The algebra

�3 = ⟨{0, 1
2
, 1},∧�3 ,∨�3 ,&�3 ,→�3 , 0, 1⟩

such that
• ∧�3(x, y) = min{x, y}
• ∨�3(x, y) = max{x, y}
• &�3(x, y) = max{0, x+ y − 1}
• →�3 (x, y) = min{1, 1− x+ y}

More generally, we may consider any Lukasiewiczn-valued logic by using the algebra�n

on the carrier set {0, 1
n−1 ,

2
n−1 , . . . ,

n−2
n−1 , 1} and with the same definitions of operations.

Example 25 (The algebra of Gödel 4-valued logic). The algebra

G4 = ⟨{0, 1
3
,
2

3
, 1},∧G4 ,∨G4 ,&G4 ,→G4 , 0, 1⟩

such that
• ∧G4(x, y) = &G4(x, y) = min{x, y}
• ∨G4(x, y) = max{x, y}
• and for →G4 :

→G4 (x, y) =

{
1 if x ≤ y

y otherwise.

As in the previous example, we may also consider any Gödel n-valued logic by
using the algebra Gn on the carrier set {0, 1

n−1 ,
2

n−1 , . . . ,
n−2
n−1 , 1} and with the same

definitions of operations.

Let us now recall some facts from classical finite model theory. Consider a purely
relational vocabulary. A sentence is said to be parametric in the sense of Oberschelp
in [40, p. 277] if it is a conjunction of sentences of the form

∀x1, . . . , xk (̸= (x1, . . . , xk) → ϕ(x1, . . . , xk)),
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where ̸= (x1, . . . , xk) is the conjunction of negated equalities expressing thatx1, . . . , xk
are pairwise distinct, and ϕ(x1, . . . , xk) is a quantifier-free formula where in all of its
atomic subformulas Rxi1 . . . xik we have that

{xi1 , . . . , xik} = {x1, . . . , xk}.

Moreover, for k = 1, any formula ∀x1ϕ(x1), where ϕ is a quantifier-free formula, is
parametric. For example,

∀x¬Rxx ∧ ∀x∀y(x ̸= y → (Rxy → Ryx))

is a parametric sentence, whereas

∀x∀y∀z(̸= (x, y, z) → (Rxy ∧Ryz → Rxz))

is not.
Oberschelp’s extension [40, Thm. 3] of Fagin’s zero-one law [23] says: on finite models

and finite purely relational vocabularies, for any class K definable by a parametric
sentence, any first-order sentence φ will be almost surely true in members of K or
almost surely false. By “almost surely true” here we mean that the limit as n goes to ∞
of the fraction of structures inK with domain {1, . . . , n} that satisfy a given sentence φ
is 1 (and “almost surely false” is defined analogously). Naturally, these fractions are well
defined because there is only a finite number of possible structures on finite vocabulary
on the domain {1, . . . , n}. As we mentioned earlier, this fact is what motivates our
restriction to finitely valued logics in this section. A very accessible presentation of
Oberschelp’s result is [22, Thm. 4.2.3].

An appropriate translation for our purposes from finitely-valued first-order logics into
classical first-order logic is introduced in [3]. Namely, for any sentence ϕ of a first-order
logic based on a finite set A ⊆ [0, 1] of truth values and element a ∈ A, we have a
first-order sentence T a(ϕ) such that, for a certain theory Σ (which can be written as a
parametric sentence in the sense of Oberschelp [40]), T a(ϕ) is satisfied by a classical
first-order model M model of Σ iff there is a corresponding first-order real-valued model
M∗ where ϕ takes value exactly a.

The idea is that, starting with a relational vocabulary τ containing countably many
predicate symbols Pn

1 , P
n
2 , P

n
3 , . . . for each arity n, we can introduce a vocabulary τ∗

containing predicate symbols Pna
i for each a ∈ A and each n (the intuition here is that

Pna
i will hold of those objects for which Pn

i takes truth value a in a given model), and
the following translation from [3] (where ◦ ∈ {∨,∧,&,→}):



18 BADIA, FAGIN, AND NOGUERA

T a(Pn
i x1 . . . xn) = Pna

i x1 . . . xn (i ≥ 1)

T a(◦(ψ1, . . . , ψn)) =
∨

b1,... ,bn∈A

◦A(b1,... ,bn)=a

∧
1≤i≤n T

bi(ψi)

T a(∃xψ) =
( ∨

k≤|A|
b1...bk∈A

max{b1,... ,bk}=a

k∧
i=1

∃xT bi(ψ)
)
∧

∧∀y (
∨

b∈A
b≤a

T b(ψ(y/x)))

T a(∀xψ) =
( ∨

k≤|A|
b1,... ,bk∈A

min{b1,... ,bk}=a

k∧
i=1

∃xT bi(ψ)
)
∧

∧∀y (
∨

b∈A
a≤b

T b(ψ(y/x))).

Observe how the translations of quantified formulas exactly describe the semantics
of quantifiers in these finitely-valued logics (i.e. existential as maximum of the truth
values of instances of the formula and, dually, universal as minimum). We use classical
disjunctions to run over all the possible choices of values b1, . . . , bk ∈ A that would
give value a as their maximum (resp. minimum) and then write the conjunction of the
necessary conditions that make sure that these bi’s are indeed values of instances of ψ
and any other instance would give a value smaller (resp. bigger) than a.

Next, we define the theory Σ given by:

∀x1, . . . , xn(
∨
a∈A

Pna
i x1 . . . xn),

∀x1, . . . , xn(¬(Pna
i x1 . . . xn ∧ Pnb

i x1 . . . xn)),

for a, b ∈ A, a ̸= b, Pn
i ∈ τ.

For any A-valued model M for the vocabulary τ , we can introduce a classical model
M∗ for the vocabulary τ∗ such that for any a ∈ A, the value of ϕ in M is a iff
M∗ |= T a(ϕ). M∗ is built by taking the same domain, M , as in M and letting the
interpretation of Pna

i be the set of all elements from Mn such that the interpretation
of Pn

i in M assigns them value a. Observe that M∗ is a model of the theory Σ. By a
similar process, from any model N of Σ, we can extract anA-valued model M such that
N = M∗.

Proposition 26. An MD-sentence ⟨ϕ1, . . . , ϕn;S⟩ is almost surely true onA-valued
models with finite domains iff

∨
⟨a1,... ,an⟩∈S(T

a1(ϕ1)∧ . . .∧T an(ϕn)) is almost surely
true on the finite models of Σ.

Proof. Suppose that ⟨ϕ1, . . . , ϕn;S⟩ is almost surely true on A-valued models with
finite domains. But every finite model of Σ can be seen as an M∗ for some finite
A-valued model M, and M∗ |=

∨
⟨a1,... ,an⟩∈S(T

a1(ϕ1) ∧ . . . ∧ T an(ϕn)) iff M |=
⟨ϕ1, . . . , ϕn;S⟩. Hence,

∨
⟨a1,... ,an⟩∈S(T

a1(ϕ1)∧ . . .∧T an(ϕn)) is almost surely true
on the finite models of Σ. The other direction follows by similar reasoning. ⊣
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Rewriting the theory Σ with some care, one can turn it into a parametric sentence
when τ is finite. For example, suppose that τ contains only a binary predicate R. Then,
Σ would have the form (for a, b ∈ A, a ̸= b):

∀x1∀x2(
∨
a∈A

Rax1x2),

∀x1∀x2(¬(Rax1x2 ∧Rbx1x2)).

This can be put into parametric form by considering instead (for a, b ∈ A, a ̸= b):

∀x1(
∨
a∈A

Rax1x1),

∀x1∀x2(x1 ̸= x2 →
∨
a∈A

Rax1x2),

∀x1(¬(Rax1x1 ∧Rbx1x1)),

∀x1∀x2(x1 ̸= x2 → ¬(Rax1x2 ∧Rbx1x2)).

Theorem 27 (Zero-one law for MD-logics based on finite algebras). For any finite re-
lational vocabulary, any MD-logic based on a finite set of truth values, and any MD-
sentence ⟨ϕ1, . . . , ϕn;S⟩, we have that ⟨ϕ1, . . . , ϕn;S⟩ is almost surely true in finite
models or ⟨ϕ1, . . . , ϕn;S⟩ is almost surely false in finite models.

Proof. This is immediate by applying Oberschelp’s version in [40] of the zero-
one law in [23] and our previous observations. By Proposition 26, an MD-sentence
⟨ϕ1, . . . , ϕn;S⟩ is almost surely true iff

∨
⟨a1,... ,an⟩∈S T

a1(ϕ1) ∧ . . . ∧ T an(ϕn) is
almost surely true on the parametric class defined by Σ. ⊣

Remark 28. One might wonder what is the relationship of Theorem 27 with the
central result from [5]. Suppose we have a 1-dimensional sentence ⟨ϕ;S⟩. Then,
applying the zero-one law from [5], the value aϕ that ϕ takes almost surely is in S only
if ⟨ϕ;S⟩ is almost surely true. Furthermore, if ⟨ϕ;S⟩ is almost surely true, then aϕ
is in S because aϕ is the value that ϕ takes almost surely. Thus, in the 1-dimensional
case, both zero-one laws are equivalent, but only the 1-dimensional case, and not the
2-dimensional case, is covered in [5]. Hence, the question really is whether for a finitely-
valued logic we would have that each MD-sentence is equivalent to a 1-dimensional
sentence. In [24] it is shown that there is a 2-dimensional MD-sentence not equivalent
to any 1-dimensional MD-sentence in logics based on the full interval [0, 1]. Does the
same hold for finitely-valued logics?

§6. The logic of all domains. In this section, we will be using the same notion of
model as in Definition 3 and we will allow the presence of equality in the vocabulary.
Now, for any given domainM , let us denote by LMD(M) the finitary part of ⊨M , that is,
the set of all pairs ⟨Γ, θ⟩ where Γ is a finite set of MD-sentences, θ is an MD-sentence,
and every model over M of Γ is a model of θ. In this section, we intend to take the
next natural step and axiomatize the finitary part of the MD-logic of all domains, i.e. the
logic

⋂
M a domain LMD(M). Let us denote this consequence relation simply as ⊨.
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What kinds of inferences can appear in
⋂

M a domain LMD(M)? Clearly, only those
not mentioning any of the domains M , since otherwise the inference could be rather
specific to a particular M . For example, an MD sentence where a domain M ′ ̸= M is
mentioned in the set S does not make sense in models based on the domainM , or rather
it is always false. Thus, we set the goal of axiomatizing all the valid inferences Γ ⊨ θ
where Γ∪ {θ} is a finite set of MD-sentences of the form ⟨φ1, . . . , φk;S⟩ with each φi

being sentences in the usual sense of a first-order predicate language and, hence, S is
simply a set of suitable tuples of truth values (thus without a mention of any domain).

Example 29. The MD-sentence ⟨φ1, φ2;S⟩ where S = {⟨0.5, 0.7⟩} and φ1 =
∀xPx and φ2 = ∀x(Px ∨ Ux) is an example of the kind of MD-sentence described
above, where φ1 and φ2 are sentences in the usual first-order sense of not having any
free individual variables.

Focusing on logical entailments between this kind of MD-sentences, we can restrict
attention (without loss of generality) to the models based in the following countable list
of domains (let us call these the legal domains):

(i) the infinite domain of natural numbers {1, 2, . . . },
(ii) for each natural number n, a domain Dn of size n (making sure that they are

pairwise disjoint and also disjoint from {1, 2, . . . }).
This is because we have the following:

Proposition 30. Any MD-sentence ⟨φ1, . . . , φk;S⟩ (where, for each 1 ≤ i ≤ k, φi

is a first-order sentence in the usual sense) with an infinite model has a countable model
too.

Proof. Take M |= ⟨φ1, . . . , φk;S⟩, so ∥φi∥M = si (for 1 ≤ i ≤ k) for some
⟨s1, . . . , sk⟩ ∈ S. By Proposition 19, then ifM is infinite, there is a countable modelM′

such that ∥φi∥M′ = si (1 ≤ i ≤ k) for ⟨s1, . . . , sk⟩, and hence M′ |= ⟨φ1, . . . , φk;S⟩,
as desired. ⊣

Consequently, if we denote the finitary part of the consequence relation over legal
domains by ⊨legal, using Proposition 30, we can see that Γ ⊨legal θ iff Γ ⊨ θ (where
Γ ∪ {θ} is a finite set of MD-sentences of the form ⟨φ1, . . . , φk;S⟩ with each φi being
sentences in the usual sense of a first-order predicate language). This means that we
can focus on axiomatizing ⊨legal for the class of MD-sentences that we have described in
Proposition 30 (even though proofs may involve manipulating all kinds of MD-sentences,
like those we will introduce in the next paragraph). Therefore, in what follows, we will
restrict ourselves to consider legal models, i.e., those based on a legal domain.

The idea is to assume MD-sentences to have the form ⟨φ1(xφ1
), . . . , φk(xφk

);S⟩
where each φi is a first-order formula whose free variables are xφi

= xi1 , . . . , xini
(for

some ni ≥ 0), and S ⊆ [0, 1]
⋃

M is legal M
n1 × . . .× [0, 1]

⋃
M is legal M

nk.

Example 31. Take a vocabulary τ with one binary predicate R. Then, we can build
the MD-sentence ⟨Rxy,∀x∀y(Rxy → Ryx);S⟩ where

S = {⟨f, 0.5⟩ | f :
⋃

M is legal

M2 −→ [0, 1]}.

We want this sentence to be satisfied in a legal model M with domain M if the truth
value of ∀x∀y(Rxy → Ryx) is 0.5 and, furthermore, the interpretation of R in the
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model M is the restriction to M of one of the functions f described in the definition of
S (which in this case, happens trivially).

As expected, we may then write

M |= ⟨φ1(xφ1
), . . . , φk(xφk

);S⟩

if the formulas φ1(xφ1), . . . , φk(xφk
) respectively define functions f1, . . . , fk on the

domain M such that there are ⟨f ′1, . . . , f ′k⟩ ∈ S for which f1, . . . , fk are the respective
restrictions to the domain M .

We transform Axiom (1) into (1)∗:

⟨φ1(xφ1
), . . . , φk(xφk

), [0, 1]
⋃

M is legal M
n1 × . . .× [0, 1]

⋃
M is legal M

nk ⟩

for all formulas φ1(xφ1), . . . , φk(xφk
).

Rules (2), (4), (5), and (6) from the original system are modified analogously into
(2)∗, (4)∗, (5)∗ and (6)∗. Rule (3) needs to be modified as:
(3)∗ From

⟨φ1(xφ1
), . . . , φk(xφk

);S⟩
infer

⟨φ1(xφ1
), . . . , φk(xφk

), φk+1(xφk+1
), . . . , φm(xφm

);S×

[0, 1]
⋃

M is legal M
nk+1 × . . .× [0, 1]

⋃
M is legal M

nm ⟩.
Finally, Rule (7) is modified into Rule (7)∗ by changing the notion of good tuple.

Indeed, given an MD-sentence ⟨φ1(xφ1
), . . . , φk(xφk

);S⟩, we will say that a tuple
⟨f1, . . . , fk⟩ ∈ S is good if for some legal domain M

(a) fm ↾M = ◦((fm1
↾M), . . . , (fmj

↾M)) whenever
φm(xφm

) = ◦(φm1
(xφm1

), . . . , φmj
(xφmj

)),

(b) (fi ↾ M)(e1, . . . , enj ) = inf{(fj ↾ M)(e1, . . . , enj , e) | e ∈ M} whenever
φi(xφi

) = ∀y φj(xφj
), for all e1, . . . , enj

∈Mnj ,
(c) (fi ↾ M)(e1, . . . , enj

) = sup{(fj ↾ M)(e1, . . . , enj
, e) | e ∈ M} whenever

φi(xφi
) = ∃y φj(xφj

), for all e1, . . . , enj
∈Mnj .

Rule (7)∗ is clearly sound with respect to the relation ⊨legal since we are only consid-
ering models based on legal domains.7 Given this system, we denote the corresponding
provability relation simply as ⊢.

Remark 32. Observe that the complexity of identifying an application of Rule (7)∗
by constructing S′ is the same, generally speaking, as in the case of a fixed countably
infinite domain and Rule (7). This is because, for example, in the latter case, in order
to identify which tuples are in S′, one might still need to compute the infimum of an
infinite set without any nice structure in general in the process of verifying the value of
a universal quantification.

We will say that ⟨φ1(xφ1
), . . . , φk(xφk

);S′⟩ is minimized if when ⟨f1, . . . , fk⟩ ∈ S′,
then there is a legal model of ⟨φ1(xφ1), . . . , φk(xφk

);S′⟩, M, such that for 1 ≤ i ≤ k
the interpretation of φi(xφi) is fi ↾M .

7Notice that if in Rule (7)∗ we had written “for each legal domain” instead of “for some legal domain” in
the definition of a good pair, the soundness argument would not work for the resulting rule.
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Lemma 33 (Minimization Lemma). Let ⟨φ1(xφ1
), . . . , φk(xφk

);S⟩ be the premise
of Rule (7)∗ and assume thatG = {φ1(xφ1), . . . , φk(xφk

)} is closed under subformulas
in the usual sense. Then, the conclusion ⟨φ1(xφ1), . . . , φk(xφk

);S′⟩ is minimized.

Proof. Assume that ⟨f1, . . . , fk⟩ ∈ S′. Since G is closed under subformulas,
there is a legal domain M and a subsequence of ⟨g1, . . . , gj⟩ of ⟨f1, . . . , fk⟩ such
that ⟨g1 ↾M, . . . , gj ↾M⟩ determines interpretations on M for the atomic formulas
appearing in G, i.e., interpretations for the predicates of the vocabulary τ in question.
But this subsequence then defines a legal model M based on the domain M where the
interpretations ofφ1(xφ1), . . . , φk(xφk

) are as indicated by ⟨g1 ↾M, . . . , gj ↾M⟩. ⊣

Lemma 34. The conclusion and premises of rules (2)∗, (3)∗, (4)∗, and (7)∗ are
logically equivalent.

Lemma 35. Minimization is preserved by the rules (2)∗ and (4)∗, i.e. if the premises
of the rules are minimized, then their conclusions are too.

With these key facts at hand, the soundness and completeness proof goes through
basically as before:

Theorem 36 (Completeness of the logic of all legal domains). Let Γ∪{θ} be a finite
set of MD-sentences in a first-order predicate language with equality. Then, Γ ⊢ θ iff
Γ ⊨legal θ.

Corollary 37 (Completeness of the logic of all domains). Let Γ∪{θ} be a finite set
of MD-sentences of the form ⟨φ1, . . . , φk;S⟩ with each φi being a sentence in the usual
sense of a first-order predicate language with equality. Then, Γ ⊢ θ iff Γ ⊨ θ.

Remark 38. The approach provided in this section allows us now to axiomatize, in
particular, the valid finitary consecutions (i.e. pairs of the form ⟨Θ, θ⟩ where Θ is a finite
set of first-order sentences and θ a first-order sentence such that the former logically
entails the latter, see e.g. [15]) of each of Lukasiewicz, Product, Gödel, and real-valued
logics with equality. This is analogous to what we did in Corollary 20. Hence, to deal
with the presence of equality in the logic, we had to leave the realm of the fixed countable
domain from Corollary 20 and, instead, study all domains that can be distinguished by
the expressive power of a first-order language with equality (namely, all finite domains
in addition to a countably infinite ones).

Another interesting consequence of our approach is that we can provide a finitary
axiomatization of the valid inferences on finite models for any real-valued logic. Let
the class of legal∗ domains be that of the legal domains minus the one countably
infinite domain (so we are keeping only the finite domains). One can then modify the
axiomatization given above by replacing the legal domains by the legal∗ ones. Clearly,
Γ ⊨legal∗ θ iff Γ ⊨finite θ, where ⊨finite is the obvious logical consequence over all finite
domains (notice that the legal domains are just a specific subset of all finite domains).
Exactly as we did previously, we can obtain:

Theorem 39 (Completeness of the logic of all finite domains). LetΓ∪{θ} be a finite
set of MD-sentences in a first-order predicate language with equality. Then, Γ ⊢ θ iff
Γ ⊨legal∗ θ iff Γ ⊨finite θ.
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By a well-known theorem of Trakhtenbrot [45], the validities of classical first-
order logic on finite models are not recursively enumerable. In the real-valued set-
ting, the result was generalized in [8] to a large class of logics. This entails that,
once more, our axiomatization cannot possibly be recursive. In fact, we can ob-
serve that the problem of determining whether S′ = ∅ in Rule (7)∗ of our axioma-
tization is not recursively enumerable, which explains why our system is not recur-
sive. This is because we can reduce the problem of whether a sentence of classical
first-order logic is valid in the finite to whether S′ = ∅. Take a first-order sen-
tence φ and let φ1(xφ1), . . . , φk(xφk

), φ be the list of all its subformulas. Con-
sider now the MD-sentence ⟨φ1(xφ1

), . . . , φk(xφk
), φ;S⟩ (call it ψ) where S :=

{0, 1}
⋃

M is legal M
n1 × . . . × {0, 1}

⋃
M is legal M

nk × {0}. Take now the MD-sentence ob-
tained by applying our Rule (7) to this sentence, ⟨φ1(xφ1

), . . . , φk(xφk
), φ;S′⟩ (call it

ψ′). Observe that ψ and ψ′ are equivalent. Furthermore, φ is valid on all finite models
iff ¬φ has no finite model iff ψ is not satisfiable in a finite domain iff ψ′ is not satisfiable
in a finite domain. Finally, by minimization and the semantics of MD-sentences, ψ′ is
not satisfiable in a finite domain iff S′ = ∅.

Remark 40. An alternative approach to the one followed in this section would
have been to take instead of MD-sentences, ‘MD-formulas’ to be objects of the form
⟨φ1(xφ1

), . . . , φk(xφk
);S⟩ where S is a set of tuples of truth values. Then, given

a first-order model M and assignment variable v to the free individual variables in
⟨φ1(xφ1), . . . , φk(xφk

);S⟩, we say that M satisfies ⟨φ1(xφ1), . . . , φk(xφk
);S⟩ under

the assignment v if

⟨∥φ1[v(xφ1
)]∥M, . . . , ∥φk[v(xφk

)]∥M⟩ ∈ S.

With this modification, everything we have done in this section would work in a very
similar manner manner as long as we modify Rule (7)∗ appropriately: given an MD-
formula ⟨φ1(xφ1

), . . . , φk(xφk
);S⟩, we will say that a tuple ⟨s1, . . . , sk⟩ ∈ S of truth

values is good if for some model M and variable assignment v for the signature of
⟨φ1(xφ1), . . . , φk(xφk

);S⟩ based on a legal domain M ,
(a) sm = ◦(sm1

, . . . , smj
) whenever ∥φm[v(xφm

)]∥M = sm, ∥φm1
[v(xφm1

)]∥M =

sm1 , etc., and φm(xφm) = ◦(φm1(xφm1
), . . . , φmj (xφmj

)),

(b) si = inf{∥φj [vy 7→e(xφj
)]∥M | vy 7→e, e ∈ M} whenever φi(xφi

) = ∀y φj(xφj
),

and vy 7→e is an assignment just like v except that the value of variable y is made e,
and ifφj(xφj ) appears on the left-hand-side of our MD-formula, ∥φj [v(xφj )]∥M =
sj ,

(c) si = sup{∥φj [vy 7→e(xφj
)]∥M | vy 7→e, e ∈M} whenever φi(xφi

) = ∃y φj(xφj
),

and vy 7→e is an assignment just like v except that the value of variable y is made e,
and ifφj(xφj

) appears on the left-hand-side of our MD-formula, ∥φj [v(xφj
)]∥M =

sj .
With this new rule, once can reproduce the proof of the Minimization Lemma and the
rest works in an analogous way.

§7. Conclusion. In this article, we have proposed a new paradigm for dealing with
inference in first-order (and modal) real-valued logics. By means of the syntax of multi-
dimensional sentences, we have obtained a high level of expressivity that goes beyond the
usual preservation of full truth given by the value 1 and surpasses even the expressivity
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of rational Pavelka logic or other fuzzy logics with truth-constants (see e.g. [20,21]). As
usual, there is a trade-off between expressivity and effectivity of any logical formalism.
In our case, we have presented axiomatic systems that are not finitistic in the sense of
metamathematics [30] because MD-sentences contain a hidden infinitary component
(that is, the sets S), but yet these systems involve only finitary rules. We have proved
corresponding completeness theorems in a similar sense as they had been obtained with
ad hoc infinitary proof systems for some particular real-valued logics (see [29, 33]),
but now in a general, uniform, parameterized way. However, it should be stressed that
on finite domains our proof systems become finitistic and everything works as in the
propositional case. Finally, sentences incorporating weights can be handled completely
analogous to the way it is done in [24]. As open problems that we have not solved in this
paper and remain as matters for future research we may mention the question whether
one can extend, in the case of modal logics, the completeness theorem for the logic of a
fixed frame (Theorem 17) to logics corresponding to meaningful classes of frames, and
the problem of developing the multidimensional approach for first-order modal logics.
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[28] Petr Hájek. Metamathematics of fuzzy logic. Springer (1998).
[29] Louise Schmir Hay. Axiomatization of the infinite-valued predicate calculus, Journal of Symbolic

Logic 28(1):77–86 (1964).
[30] Stephen Cole Kleene. Introduction to Metamathematics, North-Holland (1962).
[31] Serafina Lapenta. De Finetti’s coherence and exchangeability in infinitary logic, International Journal

of Approximate Reasoning 145:36–50 (2022).
[32] Songtao Lu, Naweed Khan, Ismail Yunus Akhalwaya, Ryan Riegel, Lior Horesh, and Alexander

Gray. Training Logical Neural Networks by Primal-Dual Methods for Neuro-Symbolic Reasoning, in IEEE
International Conference on Acoustics, Speech and Signal Processing ICASSP 2021, pp. 5559–5563 (2021).

[33] Franco Montagna. Notes on Strong Completeness in  Lukasiewicz, Product and BL Logics and in
Their First-Order Extensions. In: Stefano Aguzzoli, Agata Ciabattoni, Brunella Gerla, Corrado Manara,
and Vincenzo Marra (eds), Algebraic and Proof-theoretic Aspects of Non-classical Logics. Lecture Notes in
Computer Science, vol 4460. Springer, Berlin, Heidelberg (2007).

[34] George Metcalfe and Franco Montagna. Substructural Fuzzy Logics, Journal of Symbolic Logic
72(3):834–864 (2007).

[35] Andrzej Mostowski. Axiomatizability of some many valued predicate calculi, Fundamenta Mathe-
maticae 50(2):165–190 (1961).

[36] Vilém Novák. On the Syntactico-Semantical Completeness of First-Order Fuzzy Logic Part I (Syntax
and Semantic), Part II (Main Results), Kybernetika 26:47–66 and 134–154 (1990).
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